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A Quick Example:
An Ant Living on a Globe

 If the ant want to optimize a function on this globe, say, find the most 
attractive point, it may use the strategy of gradient ascend provided that 
the attraction function is differential.

 This talk aims at explaining this idea with mathematical rigorous.

*Picture from web



Outline

 In a nutshell, we are going to COPY the various optimization methods in 
Numerical Optimization and PASTE them to the manifold setting, and then 
apply this idea to solve the Matrix Completion problem.

 We will go through all the necessary details of mathematics, so don’t worry if 
you are not familiar with some concepts.

 We are going to talk about:

 What is a manifold,

 Review the traditional optimization methods,

 Show how to do the COPY/PASTE,

 And application to Matrix Completion.
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Introduction to
Matrix Completion
 Collaborative Filtering

 Matrix Completion



Collaborative Filtering

 Collaborative filtering (CF) is a technique used by some recommender 
systems.

 It is a recommender systems only based on logs of user usages on items.
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Matrix Completion

 One way to model is using Matrix Completion (MC).

 The task of Matrix Completion is to recover a low-rank matrix which a few 
entries are observed, possibly with noise.

 Use the assumption that the matrix is low-rank which is based on the premise 
that only a small number of factors have strong influence.

? 1 ?
1 0 1
? 1 ?



Formulation of Matrix Completion

 We address the problem when the rank is a priori known.

 Given a matrix 𝑋𝑋∗ ∈ ℝ𝑛𝑛×𝑚𝑚 whose entries are given for indices 𝑖𝑖, 𝑗𝑗 ∈ Ω where 
Ω is a subset of all possible indices { 𝑖𝑖, 𝑗𝑗 : 𝑖𝑖 ∈ 1, … ,𝑛𝑛 , 𝑗𝑗 ∈ 1, … ,𝑛𝑛 } and we find 
an 𝑋𝑋 who minimize 

arg min
𝑋𝑋∈ℝ𝑟𝑟𝑛𝑛×𝑚𝑚

1
2

𝒫𝒫Ω 𝑋𝑋 − 𝒫𝒫Ω 𝑋𝑋∗ 𝐹𝐹
2

where ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 is the set of rank-𝑟𝑟 𝑛𝑛 × 𝑚𝑚 matrices, the function

𝒫𝒫Ω 𝑋𝑋 𝑖𝑖,𝑗𝑗 = �𝑋𝑋𝑖𝑖,𝑗𝑗 if 𝑖𝑖, 𝑗𝑗 ∈ Ω
0 otherwise



Notes on Matrix Completion

 In general, one cannot expect to be able to recover a low-rank matrix from a 
sample of its entries. 

 Consider the rank-1 matrix 𝑀𝑀 with only one none zero element at the top-
right corner:

𝑀𝑀 =

0 0 ⋯ 1
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

 Under suitable conditions, reconstruction is workable.



Matrix Completion and 
Geometric Optimization Methods

 We have noticed that the search space of the MC problem is the set of fixed-
rank matrices ℝ𝑟𝑟

𝑛𝑛×𝑚𝑚.

 It must be more efficient if we can optimize right on the space of ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚

rather than the whole matrix space ℝ𝑛𝑛×𝑚𝑚.

 Later we will see that ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 is a manifold(curved surface) of dimension 

𝑚𝑚 + 𝑛𝑛 − 𝑟𝑟 𝑟𝑟 which is much lower than dimℝ𝑛𝑛×𝑚𝑚 = 𝑚𝑚𝑛𝑛 if 𝑟𝑟 ≪ 𝑚𝑚,𝑛𝑛.

 In fact, geometric optimization methods performs well on MC problem.



Introduction to 
Riemannian Manifolds
 Differential Manifolds and Riemannian Manifolds

 Product manifolds and Quotient manifolds

 Tangent Space



Differential Manifolds

 A manifold 𝑀𝑀 is a locally Euclidean topological space. For any point 𝑥𝑥 ∈ 𝑀𝑀, 
one can find a neighborhood 𝑈𝑈 homeomorphic to an open subset of ℝ𝑛𝑛. 

 This homeomorphism 𝜙𝜙:𝑈𝑈 → ℝ𝑛𝑛 provides a local coordinate. It gives every 
point in 𝑈𝑈 a Euclidian coordinate.

 𝑈𝑈,𝜙𝜙 is called a chart. All the chart satisfy certain compatibility conditions.

Picture form wiki



Differential Manifolds



Note on Manifolds

 By embedding theorems of Whitney and Nash, any smooth manifold(or 
Riemannian manifold) can be smoothly(or isometrically) embedded into some 
Euclidean space. 

 So, without loss of generality, a differential manifold can be seen as a multi-
dimensional curved surface in an Euclidean space.

 We use surface and manifold synonymously in this talk.

 The usual Euclidean space is a manifold.



Construct Manifolds 1: Submanifolds

 A subset of a manifold may be a manifold, e.g. surfaces in a space can be 
seen as a submanifold of that space. They are called submanifolds.

 Submanifolds are usually defined by the solution of a set of equations.

 Not arbitrary equations could define a manifold, but there are plenty of  
successful examples.



Example 1 of Manifold: 
Spheres

 𝒏𝒏-Sphere 𝑆𝑆𝑛𝑛 in 𝑛𝑛 + 1 dimensional Euclidean space is 

𝑆𝑆𝑛𝑛 = 𝑥𝑥 ∈ ℝ𝑛𝑛+1: 𝑥𝑥𝑇𝑇𝑥𝑥 = 1

 It is a submanifold of ℝ𝑛𝑛+1 defined by the equation 𝑥𝑥𝑇𝑇𝑥𝑥 − 1 = 0.

 𝑛𝑛 = 0 : Two points.

 𝑛𝑛 = 1 : Circle in a plane.

 𝑛𝑛 = 2 : A normal sphere in our living 3-dim’l world.



Example 2 of Manifold: 
Matrix Manifolds

 ℝ𝑚𝑚×𝑛𝑛 : size 𝑚𝑚 × 𝑛𝑛 matrices, dimension 𝑚𝑚𝑛𝑛.

 ℝ∗
𝑛𝑛×𝑝𝑝 : size 𝑛𝑛 × 𝑝𝑝 full column rank matrices, dimension 𝑛𝑛𝑝𝑝.

 𝐺𝐺𝐺𝐺 𝑛𝑛 : size 𝑛𝑛 × 𝑛𝑛 invertible matrices, dimension 𝑛𝑛2.

 𝒪𝒪 𝑛𝑛 = 𝑋𝑋 ∈ ℝ𝑛𝑛×𝑛𝑛:𝑋𝑋𝑇𝑇𝑋𝑋 = 𝐼𝐼𝑛𝑛 : orthogonal groups. dim𝒪𝒪 𝑛𝑛 = 𝑛𝑛(𝑛𝑛 − 1)/2.

 𝑆𝑆𝑆𝑆 𝑛𝑛 = 𝑋𝑋 ∈ 𝒪𝒪 𝑛𝑛 : det𝑋𝑋 = 1 : special orthogonal groups. Dim 𝑛𝑛(𝑛𝑛 − 1)/2.

 ℝ∗
𝑛𝑛×1 = ℝ∗

𝑛𝑛 is vector space ℝ𝑛𝑛 without origin, or the punctured vector space.

 ℝ∗
𝑛𝑛×𝑛𝑛 = 𝐺𝐺𝐺𝐺 𝑛𝑛



Example 3 of Manifold: 
Stiefel Manifold

 Stiefel manifold 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 consists of size 𝑛𝑛 × 𝑟𝑟 matrices with orthonormal 
columns, i.e.

𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 = {𝑋𝑋 ∈ ℝ𝑛𝑛×𝑟𝑟:𝑋𝑋𝑇𝑇𝑋𝑋 = 𝐼𝐼𝑟𝑟}

 The dimension of 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 is 𝑛𝑛𝑝𝑝 − 𝑝𝑝(𝑝𝑝 + 1)/2.

 𝑆𝑆𝑆𝑆 1,𝑛𝑛 = 𝑆𝑆𝑛𝑛−1,

 𝑆𝑆𝑆𝑆 𝑛𝑛,𝑛𝑛 = 𝑆𝑆 𝑛𝑛 ,



Fixed Rank Matrices as Manifold

 We use ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 to denote rank-𝑟𝑟 𝑛𝑛 × 𝑚𝑚 matrices.

 ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 is a submanifold of ℝ𝑛𝑛×𝑚𝑚 .

 To see this, consider rank-𝑟𝑟 matrix 𝐴𝐴 = 𝐵𝐵 𝐶𝐶
𝐷𝐷 𝐸𝐸 where 𝐵𝐵 is an 𝑟𝑟 × 𝑟𝑟 invertible 

matrix. 

 Transform 𝐴𝐴 to 𝐵𝐵 0
𝐷𝐷 −𝐷𝐷𝐵𝐵−1𝐶𝐶 + 𝐸𝐸 by multiplying 𝐼𝐼 −𝐵𝐵−1𝐶𝐶

0 𝐼𝐼
Then −𝐷𝐷𝐵𝐵−1𝐶𝐶 + 𝐸𝐸 must be 0 due to rank constraint.

 So, rank-𝑟𝑟 matrices near 𝐴𝐴 is the solution of 𝑚𝑚 − 𝑟𝑟 𝑛𝑛 − 𝑟𝑟 equations

−𝐷𝐷𝐵𝐵−1𝐶𝐶 + 𝐸𝐸 = 0

 dim ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 = 𝑚𝑚𝑛𝑛 − 𝑚𝑚 − 𝑟𝑟 𝑛𝑛 − 𝑟𝑟 = 𝑚𝑚 + 𝑛𝑛 − 𝑟𝑟 𝑟𝑟.



Objects Defined on Manifolds

 Smooth functions

 Smooth maps between manifolds, like embedding

 Tangent vectors



Tangent Vector, Tangent Space and 
Vector fields

 If we see manifolds as submanifold of ℝ𝑛𝑛, then the notion of tangent vector is 
the tangent vector in ℝ𝑛𝑛.

 A tangent vector at 𝑥𝑥 can be represented by the class of smooth curves 
passing 𝑥𝑥 which share the same tangent vector. This point of view is useful 
both conceptually and computationally.

 All the tangent vectors at a point 𝑥𝑥 ∈ 𝑀𝑀 form a vector space, denoted by
𝑇𝑇𝑥𝑥𝑀𝑀 and called the tangent space of manifold 𝑀𝑀 at point 𝑥𝑥.

 The dimension of tangent space equals the dimension of the manifold.

 If we specify a tangent vector 𝜉𝜉𝑥𝑥 to each point 𝑥𝑥 ∈ 𝑀𝑀, then we get a vector 
field 𝜉𝜉 ∈ 𝔛𝔛 𝑀𝑀 , where 𝔛𝔛 𝑀𝑀 denote the set of vector fields on 𝑀𝑀.



Example 1: Tangent Space of a Sphere

 Let 𝑆𝑆 ↦ 𝑥𝑥(𝑆𝑆) be a curve in the sphere 𝑆𝑆𝑛𝑛−1 s.t. 𝑥𝑥 0 = 𝑥𝑥0 and �̇�𝑥 0 = 𝑦𝑦.
We want to find the constraint that 𝑦𝑦 satisfies.

 Differentiating the equation
𝑥𝑥𝑇𝑇 𝑆𝑆 𝑥𝑥 𝑆𝑆 = 1

we get
�̇�𝑥𝑇𝑇 𝑆𝑆 𝑥𝑥 𝑆𝑆 + 𝑥𝑥𝑇𝑇 𝑆𝑆 �̇�𝑥 𝑆𝑆 = 0

so, 𝑦𝑦 satisfies
𝑦𝑦𝑇𝑇𝑥𝑥0 = 0

 The set {𝑦𝑦 ∈ ℝ𝑛𝑛:𝑦𝑦𝑇𝑇𝑥𝑥0 = 0} consists the tangent space 𝑇𝑇𝑥𝑥0𝑆𝑆
𝑛𝑛−1.



Example 2: Tangent Space of 𝑆𝑆𝑆𝑆(𝑝𝑝,𝑛𝑛)

 Similarly, 
𝑇𝑇𝑋𝑋0𝑆𝑆𝑆𝑆 𝑝𝑝,𝑛𝑛 = {𝑌𝑌 ∈ ℝ𝑛𝑛×𝑝𝑝:𝑋𝑋0𝑇𝑇𝑌𝑌 + 𝑌𝑌𝑇𝑇𝑋𝑋0 = 0}

 Here’s another useful characterization of the tangent space of 𝑆𝑆𝑆𝑆 𝑝𝑝,𝑛𝑛 .

 Write �̇�𝑋 𝑆𝑆 in the form
�̇�𝑋 𝑆𝑆 = 𝑋𝑋 𝑆𝑆 Ω 𝑆𝑆 + 𝑋𝑋⊥ 𝑆𝑆 𝐾𝐾 𝑆𝑆

where 𝑋𝑋⊥ is any 𝑛𝑛 × 𝑛𝑛 − 𝑝𝑝 matrix whose column space is the orthogonal 
complement of the column space of 𝑋𝑋.

 We’ll get the constraint Ω 𝑆𝑆 𝑇𝑇 + Ω 𝑆𝑆 = 0, so

𝑇𝑇𝑋𝑋0𝑆𝑆𝑆𝑆 𝑝𝑝,𝑛𝑛 = {𝑋𝑋Ω + 𝑋𝑋⊥𝐾𝐾:Ω𝑇𝑇 = −Ω,𝐾𝐾 ∈ ℝ 𝑛𝑛−𝑝𝑝 ×𝑝𝑝}



Differential of a Smooth Map

 A smooth map 𝜙𝜙:𝑀𝑀 → 𝑁𝑁 can map a curve 𝑆𝑆 ↦ 𝑥𝑥 𝑆𝑆 in 𝑀𝑀 to a curve 𝑆𝑆 ↦ 𝜙𝜙 𝑥𝑥 𝑆𝑆
in 𝑁𝑁. 

 So, it can map the tangent vector 𝜉𝜉 ∈ 𝑇𝑇𝑥𝑥𝑀𝑀 to the tangent vector 𝜂𝜂 ∈ 𝑇𝑇𝜙𝜙 𝑥𝑥 𝑁𝑁. 

 This defines the differential of map 𝜙𝜙 at point 𝑥𝑥

𝑑𝑑𝜙𝜙𝑥𝑥:𝑇𝑇𝑥𝑥𝑀𝑀 → 𝑇𝑇𝜙𝜙 𝑥𝑥 𝑁𝑁

 A smooth function 𝑓𝑓 on 𝑀𝑀 can be seen as a map 𝑓𝑓:𝑀𝑀 → ℝ. 
The differential of 𝑓𝑓 at 𝑥𝑥 is an map from 𝑇𝑇𝑥𝑥𝑀𝑀 to a real number

𝑑𝑑𝑓𝑓𝑥𝑥:𝑇𝑇𝑥𝑥𝑀𝑀 → ℝ

 If the manifold is ℝ𝑛𝑛, 𝑑𝑑𝑓𝑓𝑥𝑥(𝜉𝜉) is computed by 𝛻𝛻𝑓𝑓𝑥𝑥𝑇𝑇𝜉𝜉, i.e. the inner product of 
the tangent vector with the gradient.



Differential of a Smooth Map



Construct Manifolds 2:
Product Manifolds

 The product of an 𝑚𝑚-dim’l manifold 𝑀𝑀 and 𝑛𝑛-dim’l manifold 𝑁𝑁 is 
an 𝑚𝑚 + 𝑛𝑛 -dim’l manifold 𝑀𝑀 × 𝑁𝑁.

 At the set level, 𝑀𝑀 × 𝑁𝑁 consists of all the points of the form 𝑥𝑥1, 𝑥𝑥2
where 𝑥𝑥1 ∈ 𝑀𝑀 and 𝑥𝑥2 ∈ 𝑁𝑁.

 𝑀𝑀 × 𝑁𝑁 will get a canonical manifold structure.



Examples of Product Manifold

 ℝ𝑛𝑛 can be seen as the product of 𝑛𝑛 real lines ℝ.

 Cylinder 𝑆𝑆1 × ℝ.

 𝑛𝑛-Torus 𝑇𝑇𝑛𝑛 = 𝑆𝑆1 × ⋯× 𝑆𝑆1
𝑛𝑛

.



Notes on Product Space

 We are free to product any manifolds 𝑀𝑀 and 𝑁𝑁 to get 
an product manifold 𝑀𝑀 × 𝑁𝑁. 

 We will encounter the following notation later on:

𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 × 𝐺𝐺𝐺𝐺 𝑟𝑟 × 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛

𝒪𝒪 𝑟𝑟 × 𝒪𝒪 𝑟𝑟



Construct Manifolds 3:
Quotient Manifolds

 Equivalence relation ~ in the manifold 𝑀𝑀
 Reflexive

 Symmetric

 Transitive

 Equivalent class 𝑥𝑥 ≔ {𝑦𝑦 ∈ 𝑀𝑀:𝑦𝑦~𝑥𝑥}

 If the set 𝑀𝑀/~ admit a suitable manifold structure, then it is called a 
quotient manifold.

 The canonical map 𝜋𝜋:𝑀𝑀 → 𝑀𝑀/~ is called the canonical projection map.

 We often define relation ~ using group actions.



Quotient of a Group Action

 A group 𝐺𝐺 is a set with an operation like addition or multiplication.

 A Lie group is a group with manifold structure or manifold with group structure.

 ℝ∗, 𝑆𝑆 𝑛𝑛 , 𝐺𝐺𝐺𝐺 𝑛𝑛 are typical examples of (Lie) group.

 A Lie group 𝐺𝐺 may act on a manifold 𝑀𝑀

𝜎𝜎:𝐺𝐺 × 𝑀𝑀 → 𝑀𝑀
𝑔𝑔, 𝑥𝑥 ↦ 𝑔𝑔 ⋅ 𝑥𝑥

 Thus defines a equivalent relation 𝑥𝑥~𝑦𝑦 ⇔ ∃𝑔𝑔 ∈ 𝐺𝐺, 𝑠𝑠. 𝑆𝑆. 𝑦𝑦 = 𝑔𝑔 ⋅ 𝑥𝑥

 We denote the quotient manifold by group action 𝐺𝐺 (if it is a manifold) by 
⁄𝑀𝑀 𝐺𝐺 ≔ ⁄𝑀𝑀 ~.

 dim ⁄𝑀𝑀 𝐺𝐺 = dim𝑀𝑀 − dim𝐺𝐺



Example 1 of Quotient Manifold:
Space of Circles

 In the punctured plane, we identify circles centered at the origin as  
equivalent classes, the equivalence relation ~ is defined as

𝑥𝑥~𝑦𝑦 ⇔ 𝑥𝑥 = 𝑦𝑦

 It can also be seen as ℝ∗
2/𝑆𝑆𝑆𝑆(2).

 𝑆𝑆𝑆𝑆(2) is the special orthonormal group, the action on 𝑅𝑅∗2 is rotation.



Example 2 of Quotient Manifold:
Projective Manifolds

 𝑛𝑛-dim’l Real Projective space 𝑅𝑅𝑃𝑃𝑛𝑛 is the set of all lines that pass through 
origin in ℝ𝑛𝑛+1.

 Define the equivalence relation ~ as

𝑥𝑥~𝑦𝑦 ⟺ ∃𝑆𝑆 ∈ ℝ, 𝑠𝑠. 𝑆𝑆.𝑦𝑦 = 𝑆𝑆𝑥𝑥
Then, 𝑅𝑅𝑃𝑃𝑛𝑛−1 = ℝ∗

𝑛𝑛/~.

 𝑅𝑅𝑃𝑃1 is the set of all lines in the plane that go through the origin.

 𝑅𝑅𝑃𝑃𝑛𝑛 can be seen as a quotient of group action 𝑅𝑅𝑃𝑃𝑛𝑛 = ⁄ℝ∗
𝑛𝑛 ℝ∗.

𝑆𝑆 ∈ 𝑅𝑅∗ acts on 𝑥𝑥 ∈ 𝑅𝑅∗𝑛𝑛 by scalar multiplication 𝑆𝑆 ⋅ 𝑥𝑥 ≔ 𝑆𝑆𝑥𝑥.



Example 3 of Quotient Manifold: 
Grassmann Manifolds

 A Grassmann Manifold 𝐺𝐺𝑟𝑟 𝑝𝑝,𝑛𝑛 is the set of all 𝑝𝑝-dim’l subspace of ℝ𝑛𝑛.

 𝐺𝐺𝑟𝑟 𝑝𝑝,𝑛𝑛 = ℝ∗
𝑛𝑛×𝑝𝑝/𝐺𝐺𝐺𝐺 𝑝𝑝 is also an example of the quotient of a group action.

 𝐺𝐺𝑟𝑟 1,𝑛𝑛 = 𝑅𝑅𝑃𝑃𝑛𝑛−1.

 𝐺𝐺𝑟𝑟 2, 3 is all the planes in the 3-dim’l vector space passing through the origin.

 The dimension of 𝐺𝐺𝑟𝑟 𝑝𝑝,𝑛𝑛 is 𝑝𝑝(𝑛𝑛 − 𝑝𝑝).



Fixed Rank Matrices as 
Quotient Manifolds

 The rank-𝑟𝑟 matrices ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 can be characterized by quotient manifolds.

 Factor the matrix 𝑋𝑋 ∈ ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 as

𝑋𝑋 = 𝑈𝑈𝑅𝑅𝑉𝑉𝑇𝑇

where 𝑈𝑈 ∈ 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 ,𝑉𝑉 ∈ 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑚𝑚 and 𝑅𝑅 ∈ 𝑅𝑅∗𝑟𝑟×𝑟𝑟.

 Since 𝑋𝑋 = 𝑈𝑈𝑅𝑅𝑉𝑉𝑇𝑇 = 𝑈𝑈𝑆𝑆1 𝑆𝑆1𝑇𝑇𝑅𝑅𝑆𝑆2 𝑉𝑉𝑆𝑆2 𝑇𝑇 for any 𝑆𝑆1,𝑆𝑆2 ∈ 𝒪𝒪 𝑟𝑟 , we can define 
group 𝒪𝒪 𝑟𝑟 × 𝒪𝒪 𝑟𝑟 act on the space 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 × 𝐺𝐺𝐺𝐺 𝑟𝑟 × 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 by

𝒪𝒪 𝑟𝑟 × 𝒪𝒪 𝑟𝑟 × 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 × 𝐺𝐺𝐺𝐺 𝑟𝑟 × 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 → 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 × 𝐺𝐺𝐺𝐺 𝑟𝑟 × 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛
𝑆𝑆1,𝑆𝑆2 , 𝑈𝑈,𝑅𝑅,𝑉𝑉 ↦ 𝑈𝑈𝑆𝑆1,𝑆𝑆1𝑇𝑇𝑅𝑅𝑆𝑆2,𝑉𝑉𝑆𝑆2

 So, ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 can be seen as a quotient

ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 = 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 × 𝐺𝐺𝐺𝐺 𝑟𝑟 × 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 /𝒪𝒪 𝑟𝑟 × 𝒪𝒪 𝑟𝑟



Riemannian Manifold and 
Riemannian Metric

 A Riemannian manifold 𝑀𝑀,𝑔𝑔 consists of a smooth manifold 𝑀𝑀 and a 
Riemannian Metric 𝑔𝑔 which provide an inner product 𝑔𝑔𝑥𝑥 on each of the 
tangent space 𝑇𝑇𝑥𝑥𝑀𝑀 of 𝑀𝑀.

 An inner product is a symmetric, positive-definite bilinear form.

 We use inner product and metric synonymously.

 Metric related concepts:

 Length

 Volume

 Angles



Compute Length of a Curve in 
Riemannian Manifold

 Let 𝛾𝛾: 0,1 → 𝑀𝑀,𝑔𝑔 is a curve in Riemannian manifold 𝑀𝑀,𝑔𝑔 .

 The length of 𝛾𝛾 is defined as

𝑙𝑙 𝛾𝛾 = �
0

1
𝑔𝑔 �̇�𝛾 𝑆𝑆 , �̇�𝛾 𝑆𝑆 𝑑𝑑𝑆𝑆



Notes on Riemannian Manifolds

 A submanifold of a Riemannian Manifold can inherit a canonical Riemannian 
metric, so it is also a Riemannian manifold.

 The product of two Riemannian manifolds (𝑀𝑀,𝑔𝑔1) and (𝑁𝑁,𝑔𝑔2) is a Riemannian 
manifold (𝑀𝑀 × 𝑁𝑁,𝑔𝑔1 + 𝑔𝑔2).

 We can also define Riemannian quotient manifolds.



Example 1 of Riemannian Metric:
Inner Product of Euclidean Space

 The canonical inner product 𝑔𝑔0 𝑥𝑥,𝑦𝑦 ≔ 𝑥𝑥𝑇𝑇𝑦𝑦 provide a natural metric on ℝ𝑛𝑛.

 A vector space endowed with the natural inner product ℝ𝑛𝑛,𝑔𝑔0 is called 
Euclidean Space.

 Nonstandard inner product is possible. Given 𝑛𝑛 × 𝑛𝑛 symmetric, positive 
definite matrix 𝐴𝐴, define inner product 𝑔𝑔 on ℝ𝑛𝑛 as

𝑔𝑔 𝑥𝑥, 𝑦𝑦 ≔ 𝑥𝑥𝑇𝑇𝐴𝐴𝑦𝑦

then, ℝ𝑛𝑛,𝑔𝑔 is a Riemannian manifold.

 This manifold can be viewed as a stretched version of normal space ℝ𝑛𝑛, for 
some directions may be longer than others.



Example 2 of Riemannian Metric:
Metrics on Matrices

 The most simple and natural inner product one can define on ℝ𝑚𝑚×𝑛𝑛 is

𝑋𝑋,𝑌𝑌 ≔ 𝑆𝑆𝑟𝑟 𝑋𝑋𝑇𝑇𝑌𝑌

 On ℝ𝑚𝑚×1 ≅ 𝑅𝑅𝑚𝑚, the above inner product is the canonical one on an 
Euclidean space.

 Frobenius norm is the norm induced by this metric

𝐴𝐴 𝐹𝐹 = 𝑆𝑆𝑟𝑟 𝐴𝐴𝑇𝑇𝐴𝐴 = 𝐴𝐴,𝐴𝐴

 ℝ∗
𝑛𝑛×𝑝𝑝 and 𝑆𝑆𝑆𝑆 𝑝𝑝,𝑛𝑛 can inherit that metric from ℝ𝑛𝑛×𝑝𝑝.



Riemannian Quotient Manifolds

 If we want to define Riemannian structure on the quotient manifold of a 
Riemannian manifold, we have to assign an inner product to the tangent 
space of each point. 

 We must deal with the problem that on the equivalence classes, different 
point have different tangent space and different inner products.

 To tackle this problem, we need the following concept of Horizontal lift.



Vertical Space and Horizontal Space

 Consider the canonical projection

𝜋𝜋: �𝑀𝑀 → 𝑀𝑀 = ⁄�𝑀𝑀 ~
and a point 𝑥𝑥 ∈ 𝑀𝑀.

 The equivalence class 𝜋𝜋−1 𝑥𝑥 is a manifold.

 Let �̅�𝑥 ∈ �𝑀𝑀 be an element of the equivalence class 𝜋𝜋−1(𝑥𝑥).

 The tangent space
𝒱𝒱�̅�𝑥 = 𝑇𝑇�̅�𝑥 𝜋𝜋−1 𝑥𝑥

is a subspace of 𝑇𝑇�̅�𝑥 �𝑀𝑀, it is called the vertical space at �̅�𝑥.

 In Riemannian manifold, the orthogonal complement of vertical space can 
serve as the horizontal space.

ℋ�̅�𝑥 ≔ 𝑇𝑇�̅�𝑥𝒱𝒱�̅�𝑥 ⊥



Horizontal Lift

 The differential of the canonical projection 𝜋𝜋: �𝑀𝑀 → 𝑀𝑀 induces an isomorphism 
between the horizontal space and the tangent space of the quotient manifold.

𝐷𝐷𝜋𝜋 �̅�𝑥 :ℋ�̅�𝑥 → 𝑇𝑇𝑥𝑥𝑀𝑀

 So, given a tangent vector 𝜉𝜉𝑥𝑥 ∈ 𝑇𝑇𝑥𝑥𝑀𝑀, we can assign an unique horizontal 
tangent vector ̅𝜉𝜉�̅�𝑥 in the tangent space 𝑇𝑇�̅�𝑥 �𝑀𝑀.

 This unique horizontal vector ̅𝜉𝜉�̅�𝑥 is called the horizontal lift of 𝜉𝜉𝑥𝑥 at �̅�𝑥.

 Horizontal lift gives us a way to ‘align’ the tangent spaces of points in  an 
equivalence class, so that tangent vectors on the quotient manifold can find 
unique representatives on the vector spaces of the original manifold.

 This ‘alignment’ can be used to define Riemannian metric on the quotient 
space.



Definition of 
Riemannian Quotient Manifold

 Given Riemannian manifold ( �𝑀𝑀, �̅�𝑔) and the canonical projection 𝜋𝜋: �𝑀𝑀 → 𝑀𝑀

 If the metric is consistent along each of the equivalence class, 
i.e. the inner product �̅�𝑔�̅�𝑥( ̅𝜉𝜉�̅�𝑥, ̅𝜁𝜁�̅�𝑥) does not depend on �̅�𝑥 ∈ 𝜋𝜋−1(𝑥𝑥), then we can 
define 

𝑔𝑔𝑥𝑥 𝜉𝜉𝑥𝑥, 𝜁𝜁𝑥𝑥 ≔ �̅�𝑔�̅�𝑥 ̅𝜉𝜉�̅�𝑥, ̅𝜁𝜁�̅�𝑥
as the metric of the quotient manifold 𝑀𝑀.

 Endowed with the above metric, 𝑀𝑀 is called a Riemannian quotient manifold 
of �𝑀𝑀.



Example 1 of Riemannian Quotient 
Manifolds: Space of Circles

 The normal inner product on the punctured plane ℝ∗
2 can be used to define a 

metric on the quotient space ⁄ℝ∗
2 𝑆𝑆𝑆𝑆 2 .

 The result metric is identical with the normal metric of a real line ℝ.



Example 2 of Riemannian Quotient 
Manifolds: Projective Space

 For the projective space 𝑅𝑅𝑃𝑃𝑛𝑛−1 = ℝ∗
𝑛𝑛/ℝ∗, the canonical inner product on ℝ∗

𝑛𝑛

does not provide a Riemannian metric for 𝑅𝑅𝑃𝑃𝑛𝑛−1.

 Define inner product on 𝑇𝑇𝑦𝑦ℝ∗
𝑛𝑛 as

𝜉𝜉𝑦𝑦, 𝜂𝜂𝑦𝑦 ≔
1
𝑦𝑦𝑇𝑇𝑦𝑦

𝜉𝜉𝑇𝑇𝜂𝜂

where 𝜉𝜉𝑦𝑦, 𝜂𝜂𝑦𝑦 ∈ 𝑇𝑇𝑦𝑦ℝ∗
𝑛𝑛.

 This inner product can induce a Riemannian metric on the quotient space 
𝑅𝑅𝑃𝑃𝑛𝑛−1.



Example 3 of Riemannian Quotient 
Manifolds: Grassmann Manifolds

 Analogous to the projective space case, define the metric on ℝ∗
𝑛𝑛×𝑝𝑝 as

𝑔𝑔𝑌𝑌 𝑍𝑍,𝑊𝑊 = 𝑆𝑆𝑟𝑟 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑍𝑍𝑇𝑇𝑊𝑊

where 𝑌𝑌 ∈ ℝ∗
𝑛𝑛×𝑝𝑝 and 𝑍𝑍,𝑊𝑊 ∈ 𝑇𝑇𝑌𝑌ℝ∗

𝑛𝑛×𝑝𝑝.

 We can check that this metric can induce to the quotient space ⁄ℝ∗
𝑛𝑛×𝑝𝑝 𝐺𝐺𝐺𝐺 𝑝𝑝 , 

i.e. the Grassmann manifold 𝐺𝐺𝑟𝑟 𝑝𝑝,𝑛𝑛 .



Recall of 
Some Optimization Methods
on Euclidean Spaces
 Gradient Descent

 Trust-Region

 Conjugate Gradient

 Newton Method



Unconstrained Optimizations

 We briefly review some classical unconstrained optimization techniques.

 In this section, Euclidean spaces are assumed to be the search space. 

 Later on, search space will be generalized to Riemannian manifolds.

 In general, optimization algorithms generate a sequence of points 𝑥𝑥𝑘𝑘 𝑘𝑘=0
∞ from 

the initial point 𝑥𝑥0, in the hope that they can converge to the solution fast.

 Different methods differ in the strategy of choosing the next iteration point 𝑥𝑥𝑘𝑘+1.

 Suppose the objective function to be optimized is 𝑓𝑓.



Gradient Descent Method

 Gradient descent, or steepest descent is a first-order optimization algorithm 
which belongs to line search strategy.

 Line search strategies first choose a descent direction, then choose a proper 
step length.

 Gradient descent method moves along the steepest-descent direction 
𝑝𝑝𝑘𝑘 = −𝛻𝛻𝑓𝑓𝑘𝑘 at every step

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘
where 𝛼𝛼𝑘𝑘 is a step length needed to be assigned.



Armijo Condition

 In choosing the step length 𝛼𝛼𝑘𝑘, we want a sufficient decrease of 𝑓𝑓.

 The sufficient decrease can be measured by the Armijo condition:

𝑓𝑓 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑝𝑝𝑘𝑘 ≤ 𝑓𝑓 𝑥𝑥𝑘𝑘 + 𝑐𝑐1𝛼𝛼𝛻𝛻𝑓𝑓𝑘𝑘𝑇𝑇𝑝𝑝𝑘𝑘
for some parameter 𝑐𝑐1 ∈ 0,1 .

 Armijo condition can always be satisfied when 𝛼𝛼 is small.



Armijo Condition



Trust-Region Methods

 Trust-Region method generate steps with the help of a quadratic model of 𝑓𝑓

𝑓𝑓 𝑥𝑥𝑘𝑘 + 𝑝𝑝 ≈ 𝑚𝑚𝑘𝑘 𝑝𝑝 = 𝑓𝑓𝑘𝑘 + 𝛻𝛻𝑓𝑓𝑘𝑘𝑇𝑇𝑝𝑝 +
1
2
𝑝𝑝𝑇𝑇𝛻𝛻2𝑓𝑓𝑘𝑘𝑝𝑝 𝑠𝑠. 𝑆𝑆. 𝑝𝑝 ≤ Δ𝑘𝑘

where 𝛻𝛻2𝑓𝑓𝑘𝑘 is the Hessian.

 Since the quadratic model is an approximation, a region 𝑝𝑝 ≤ Δ𝑘𝑘 that can be 
trusted should be specified. 

 Then choose the step to be the minimizer of the model 𝑚𝑚𝑘𝑘 in this trust region.

 Two sub-problems:

 Decide the region radius Δ𝑘𝑘,

 Find the minimizer of 𝑚𝑚𝑘𝑘 in the region.



Choosing the Region Radius Δ𝑘𝑘

 Define the ratio 𝜌𝜌𝑘𝑘 between the actual reduction and the predicted reduction

𝜌𝜌𝑘𝑘 =
𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘 + 𝑝𝑝𝑘𝑘
𝑚𝑚𝑘𝑘 0 −𝑚𝑚𝑘𝑘 𝑝𝑝𝑘𝑘

 If 𝜌𝜌𝑘𝑘 is close to 1, the model is a good approximation of 𝑓𝑓, so it’s safe to 
increase Δ𝑘𝑘.

 If 𝜌𝜌𝑘𝑘 is close to 0 or be negative, we shrink the region. And in the negative 
case, we should also reject the current step and retry.

 Otherwise, Δ𝑘𝑘 stay unchanged.



Minimize in the Region:
The Cauchy Point

 Often we find an approximate minimizer of 𝑚𝑚𝑘𝑘 in the trust region rather than 
the exact solution.

 To achieve global convergence, we need sufficient reduction which can be 
quantified in terms of the Cauchy point.

 Cauchy point 𝑝𝑝𝑘𝑘𝐶𝐶 is the minimizer along the gradient direction in the trust 
region.

 An adapted conjugate gradient method can be used to find an approximate 
minimizer and guarantees better reduction than the Cauchy point.



Introduction to Conjugate Gradient 
Methods: Coordinate Descent Method

 An approach that is easy to use is to cycle through the 𝑛𝑛 coordinate directions, 
minimize 𝑓𝑓 in these directions in turn and repeat after a cycle.

 Simple, intuitive but inefficient.

 The best we can imagine is to cycle just once and get the solution. 

 For 𝑓𝑓 𝑥𝑥 = 1
2
𝑥𝑥𝑇𝑇Λ𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥 where Λ is a diagonal 𝑛𝑛 × 𝑛𝑛 matrix, it’s easy to see 

coordinate descent method will stop in one cycle, i.e. no more than 𝑛𝑛 steps.

 Surprisingly, for some more general quadratic functions, we can also reach 
the minimum in 𝑛𝑛 steps---but under suitably chosen coordinate directions.



Conjugate Directions

 Consider minimization of the quadratic function

𝜙𝜙 𝑥𝑥 =
1
2
𝑥𝑥𝑇𝑇𝐴𝐴𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥

where 𝐴𝐴 is an 𝑛𝑛 × 𝑛𝑛 symmetric, positive definite matrix.

 A set of directions(vectors) 𝑝𝑝0, 𝑝𝑝1, … , 𝑝𝑝𝑙𝑙 is said to be conjugate w.r.t. 𝐴𝐴 if

𝑝𝑝𝑖𝑖𝑇𝑇𝐴𝐴𝑝𝑝𝑗𝑗 = 0, ∀𝑖𝑖 ≠ 𝑗𝑗

 The set of conjugate vectors are linearly independent, so a full set of such 
vectors form a basis to the vector space.



Conjugate Directions as Coordinates

 Given a full set of conjugate directions 𝑝𝑝0, 𝑝𝑝1, … , 𝑝𝑝𝑛𝑛−1 and put them into a 
matrix 𝑆𝑆 = 𝑝𝑝0 𝑝𝑝1 …𝑝𝑝𝑛𝑛−1 .

 Change the coordinates so that 𝑝𝑝𝑖𝑖 are new coordinate directions

𝑥𝑥 = 𝑆𝑆 �𝑥𝑥

 The objective function 𝜙𝜙 under new coordinates becomes

�𝜙𝜙 �𝑥𝑥 = 𝜙𝜙 𝑆𝑆�𝑥𝑥 =
1
2
�𝑥𝑥𝑇𝑇 𝑆𝑆𝑇𝑇𝐴𝐴𝑆𝑆 �𝑥𝑥 − 𝑆𝑆𝑇𝑇𝑏𝑏 𝑇𝑇 �𝑥𝑥

where the matrix 𝑆𝑆𝑇𝑇𝐴𝐴𝑆𝑆 is diagonal according to conjugacy.

 If we minimize function 𝑓𝑓 along these new coordinate directions one by one, 
we will get to the solution in 𝑛𝑛 steps.



Conjugate Direction Method

 In fact, we need not to do the coordinate transformation explicitly.
Just optimize along these conjugate directions in turn is fine. This is the 
conjugate direction method.

 Given a starting point 𝑥𝑥0 and conjugate directions 𝑝𝑝0, 𝑝𝑝1, … , 𝑝𝑝𝑛𝑛−1 , the 
sequence 𝑥𝑥𝑘𝑘 is generated by

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘

𝛼𝛼𝑘𝑘 = −
𝛻𝛻𝜙𝜙𝑘𝑘𝑇𝑇𝑝𝑝𝑘𝑘
𝑝𝑝𝑘𝑘𝑇𝑇𝐴𝐴𝑝𝑝𝑘𝑘

 Here 𝑥𝑥𝑘𝑘+1 is the minimizer of 𝜙𝜙 𝑥𝑥 along the line passing 𝑥𝑥𝑘𝑘 with direction 𝑝𝑝𝑘𝑘.



Conjugate Gradient Method

 The real conjugate gradient method(CG) provide a clever way to generate 
conjugate directions 𝑝𝑝𝑘𝑘.

 Starting from a gradient direction as 𝑝𝑝0, this method can compute a new 
vector 𝑝𝑝𝑘𝑘+1 using only the previous vector 𝑝𝑝𝑘𝑘 while promising the conjugacy 
of 𝑝𝑝𝑘𝑘+1 to all previous 𝑝𝑝𝑖𝑖 (𝑖𝑖 ≤ 𝑘𝑘).

 The magical code is
𝑝𝑝𝑘𝑘+1 = −𝛻𝛻𝜙𝜙𝑘𝑘+1 + 𝛽𝛽𝑘𝑘+1𝑝𝑝𝑘𝑘

𝛽𝛽𝑘𝑘+1 =
𝛻𝛻𝜙𝜙𝑘𝑘+1𝑇𝑇 𝐴𝐴𝑝𝑝𝑘𝑘
𝑝𝑝𝑘𝑘𝑇𝑇𝐴𝐴𝑝𝑝𝑘𝑘

 In practice, 𝛽𝛽𝑘𝑘 can be computed using an equivalent but faster expression

𝛽𝛽𝑘𝑘+1 =
𝛻𝛻𝜙𝜙𝑘𝑘+1𝑇𝑇 𝛻𝛻𝜙𝜙𝑘𝑘+1
𝛻𝛻𝜙𝜙𝑘𝑘𝑇𝑇𝛻𝛻𝜙𝜙𝑘𝑘



Pseudo Code of CG



Note on Conjugate Directions

 Conjugate directions can be understood as a version of orthogonality.

 Using matrix 𝐴𝐴, we can define an inner product 𝑔𝑔 on ℝ𝑛𝑛

𝑔𝑔 𝑥𝑥, 𝑦𝑦 ≔ 𝑥𝑥𝑇𝑇𝐴𝐴𝑦𝑦

 Then in the nonstandard Euclidean space (ℝ𝑛𝑛,𝑔𝑔), two vectors 𝑥𝑥 and 𝑦𝑦 are said 
to be orthogonal if 𝑔𝑔 𝑥𝑥,𝑦𝑦 = 𝑥𝑥𝑇𝑇𝐴𝐴𝑦𝑦 = 0, which coincides with the condition of 
conjugacy.

 Interesting fact: in space (ℝ𝑛𝑛,𝑔𝑔), the contours of the quadratic function 
𝜙𝜙 𝑥𝑥 = 1

2
𝑥𝑥𝑇𝑇𝐴𝐴𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥 are spheres.

 In the viewpoint of this Euclidean space, conjugate direction method is 
optimizing a circular shaped quadratic function along a set of orthogonal 
directions.



Nonlinear Conjugate Gradient Methods

 The above conjugate gradient method introduced in fact solves a linear 
system of equations 

𝐴𝐴𝑥𝑥 = 𝑏𝑏
So it is also called the linear conjugate gradient method.

 There are a number of nonlinear versions of CG method to deal with a 
general nonlinear function 𝑓𝑓.

 We introduce two variations: the Fletcher-Reeves Method(FR-CG) and the 
Polak-Ribière Method(PR-CG).



Fletcher-Reeves Method and
Polak-Ribière Method

 Fletcher-Reeves method makes two simple changes to the linear CG method

 A line search that identifies an approximate minimum of 𝑓𝑓 along the search 
direction 𝑝𝑝𝑘𝑘 is needed,

 For the new direction 𝑝𝑝𝑘𝑘+1 = −𝛻𝛻𝜙𝜙 𝑥𝑥𝑘𝑘+1 + 𝛽𝛽𝑘𝑘+1𝑝𝑝𝑘𝑘, 𝛽𝛽𝑘𝑘+1 is replaced by 𝛽𝛽𝑘𝑘+1𝐹𝐹𝐹𝐹

𝛽𝛽𝑘𝑘+1𝐹𝐹𝐹𝐹 =
𝛻𝛻𝑓𝑓𝑘𝑘+1𝑇𝑇 𝛻𝛻𝑓𝑓𝑘𝑘+1
𝛻𝛻𝑓𝑓𝑘𝑘𝑇𝑇𝛻𝛻𝑓𝑓𝑘𝑘

 Polak-Ribière method modifies the 𝛽𝛽 parameter of FR-CG as

𝛽𝛽𝑘𝑘+1𝑃𝑃𝐹𝐹 =
𝛻𝛻𝑓𝑓𝑘𝑘+1𝑇𝑇 𝛻𝛻𝑓𝑓𝑘𝑘+1 − 𝛻𝛻𝑓𝑓𝑘𝑘

𝛻𝛻𝑓𝑓𝑘𝑘𝑇𝑇𝛻𝛻𝑓𝑓𝑘𝑘
 The two methods are identical when 𝑓𝑓 is a strongly convex quadratic function.



Back to Trust-Region Sub-problem

 Sub-problem of minimizing 𝑚𝑚𝑘𝑘 in the trust region can be tackled using CG 
method. This is Steihaug’s approach.

 Steihaug’s CG differs from standard CG in that extra stopping criteria are 
added.

 Like, the algorithm should terminate when 𝑝𝑝𝑘𝑘+1 run out of the trust region 
bound; or stop after a certain steps in case of large dimensions.



Scaling

 Scaling is changing scales of variables. Things like changing from meters to 
millimeters.

 Scaling can be regarded as a way of preconditioning which aims at improving 
the eigenvalue distribution of matrices in question.

 We use scaling here in an extended fashion.

 Scaling has impact on some optimization methods like gradient descent, trust-
region, etc.

 Newton method is less affected.



Newton Method

 Newton method is a line search strategy which choose its search direction---
Newton direction---utilizing the second-order information of 𝑓𝑓.

 Like the trust-region method, it uses a local quadratic model

𝑓𝑓 𝑥𝑥𝑘𝑘 + 𝑝𝑝 ≈ 𝑚𝑚𝑘𝑘 𝑝𝑝 = 𝑓𝑓𝑘𝑘 + 𝛻𝛻𝑓𝑓𝑘𝑘𝑇𝑇𝑝𝑝 +
1
2
𝑝𝑝𝑇𝑇𝛻𝛻2𝑓𝑓𝑘𝑘𝑝𝑝

 Suppose 𝛻𝛻2𝑓𝑓𝑘𝑘 is positive definite, the Newton direction 𝑝𝑝𝑘𝑘𝑁𝑁 is the vector that 
points to the minimization of 𝑚𝑚𝑘𝑘 𝑝𝑝 from point 𝑥𝑥𝑘𝑘.

 By setting the derivative of 𝑚𝑚𝑘𝑘 𝑝𝑝 to zero, we get 

𝑝𝑝𝑘𝑘𝑁𝑁 = −𝛻𝛻2𝑓𝑓𝑘𝑘−1𝛻𝛻𝑓𝑓𝑘𝑘
 Suppose 𝑓𝑓 is a quadratic function, it is clear that no matter what the scale is, 

Newton method will always find the right search direction.



Riemannian Metric and Scaling

 We have considered the quadratic function 𝜙𝜙 𝑥𝑥 = 1
2
𝑥𝑥𝑇𝑇𝐴𝐴𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥 in the 

context of nonstandard Euclidean space (ℝ𝑛𝑛,𝑔𝑔), where 𝑔𝑔 is inner product

𝑔𝑔 𝑥𝑥, 𝑦𝑦 ≔ 𝑥𝑥𝑇𝑇𝐴𝐴𝑦𝑦

and saw that the contours of 𝜙𝜙 are perfect circles in this space.

 Suppose 𝑓𝑓 has the following Taylor expansion

𝑓𝑓 𝑥𝑥𝑘𝑘 + 𝑝𝑝 ≈ 𝑚𝑚𝑘𝑘 𝑝𝑝 = 𝑓𝑓𝑘𝑘 + 𝛻𝛻𝑓𝑓𝑘𝑘𝑇𝑇𝑝𝑝 +
1
2
𝑝𝑝𝑇𝑇𝛻𝛻2𝑓𝑓𝑘𝑘𝑝𝑝

 To make the elliptic contours of 𝑚𝑚𝑘𝑘 𝑝𝑝 more circular, it’s reasonable to endow 
the space with a metric associate with the Hessian 𝛻𝛻2𝑓𝑓𝑘𝑘. 

 Under this metric, the Riemannian gradient(the steepest ascent direction) of 
𝑓𝑓 at point 𝑥𝑥𝑘𝑘 is exactly 𝛻𝛻2𝑓𝑓𝑘𝑘−1𝛻𝛻𝑓𝑓𝑘𝑘, which agrees with the Newton direction. 

 So a properly chosen Riemannian metric can serve as a scaling.



More about
Riemannian Geometry
 Geodesics, Exponential Map

 Connection

 Gradient, Hessian

 Parallel Transport



Optimization on Surface

 Suppose an objective function 𝑓𝑓 is defined on a surface. To use classical 
optimization methods on surface, we need to clarify the following notions

 Straight lines, 

 The steepest descent direction or gradient,

 Moving a tangent vector from one point to another,

 Hessian.

 Riemannian geometry provide corresponding concepts as

 Geodesics,

 Riemannian gradient,

 Parallel transport,

 and Hessian.



Riemannian Gradient

 Given a smooth function 𝑓𝑓 on a Riemannian manifold 𝑀𝑀,𝑔𝑔

 The Riemannian gradient of 𝑓𝑓 at 𝑥𝑥, denoted by 𝛻𝛻𝑓𝑓 𝑥𝑥 is the unique element in 
𝑇𝑇𝑥𝑥𝑀𝑀 that satisfies

𝑔𝑔 𝛻𝛻𝑓𝑓 𝑥𝑥 , 𝜉𝜉𝑥𝑥 = 𝑑𝑑𝑓𝑓𝑥𝑥 𝜉𝜉𝑥𝑥 , ∀𝜉𝜉𝑥𝑥 ∈ 𝑇𝑇𝑥𝑥𝑀𝑀

 in local coordinates, if the inner product at 𝑥𝑥 is 𝐺𝐺𝑥𝑥 in matrix notation, then 

𝛻𝛻𝑓𝑓 𝑥𝑥 = 𝐺𝐺𝑥𝑥−1 grad 𝑓𝑓 𝑥𝑥

here grad 𝑓𝑓 𝑥𝑥 denotes the Euclidean gradient in ℝ𝑛𝑛.



Note on Riemannian Gradient

 The gradient of 𝑓𝑓 ∈ 𝐶𝐶∞ 𝑀𝑀 on a submanifold 𝑀𝑀 ⊂ 𝑁𝑁 is equal to the projection 
of the gradient 𝑓𝑓 ∈ 𝐶𝐶∞ 𝑁𝑁 onto the tangent space of 𝑀𝑀. Here 𝑓𝑓 is any smooth 
extension of 𝑓𝑓 to 𝑁𝑁.

 Suppose 𝑀𝑀 = �𝑀𝑀/~ is a quotient manifold, then the horizontal lift of the 
gradient of 𝑓𝑓 ∈ 𝐶𝐶∞ 𝑀𝑀 is equal to the gradient of ̅𝑓𝑓 ∈ 𝐶𝐶∞ �𝑀𝑀 . Here ̅𝑓𝑓 is the 
function induced by 𝑓𝑓.



Geodesics

 Geodesics is the analogue of straight lines in a curved space.

 Intuitively, geodesic is the shortest path between two points.

 The definition of a geodesic 𝛾𝛾: 𝐼𝐼 → 𝑀𝑀 is by a differential equation
�̈�𝛾 = 0

which means that curve has a constant speed.



Geodesics



Exponential Map

 Exponential map exp𝑥𝑥:𝑇𝑇𝑥𝑥𝑀𝑀 → 𝑀𝑀 provide a way to control the surface near a 
point using the tangent space of that point. This is convenient because 
tangent space is a vector space while the surface is a curved space. 

 Exponential map sends a vector 𝜉𝜉 ∈ 𝑇𝑇𝑥𝑥𝑀𝑀 to a point 𝑦𝑦 ∈ 𝑀𝑀 s.t. 𝑦𝑦 is the 
endpoint of the unique geodesic 𝛾𝛾 𝑆𝑆 which starts at 𝛾𝛾 0 = 𝑥𝑥 with initial 
velocity �̇�𝛾 0 = 𝜉𝜉 and stops at time 1. i.e. 𝑦𝑦 = 𝛾𝛾 1 .

 Generally, exponential map could only be defined locally.



Exponential Map



Connection

 In the definition of geodesics, we compute the acceleration of a curve 𝛾𝛾 𝑆𝑆 . In 
the second derivative, we are differentiating a vector field.

 Unfortunately, neither the manifold structure nor the Riemannian structure 
provide a natural definition of differentiating a vector field because there are 
no natural ‘connections’ between two different vector spaces 𝑇𝑇𝑥𝑥𝑀𝑀 and 𝑇𝑇𝑦𝑦𝑀𝑀.

 Connection is an additional structure to differentiate vector fields.

 An affine connection 𝛻𝛻 on a manifold 𝑀𝑀 is a mapping

𝛻𝛻:𝔛𝔛 𝑀𝑀 × 𝔛𝔛 𝑀𝑀 → 𝔛𝔛 𝑀𝑀
𝜂𝜂, 𝜉𝜉 ↦ 𝛻𝛻𝜂𝜂𝜉𝜉

which satisfy several conditions.



Note on Connection

 The vector field 𝛻𝛻𝜂𝜂𝜉𝜉 is called the covariant derivative of 𝜉𝜉 along 𝜂𝜂.

 Covariant derivative is a version of directional derivative.

 In ℝ𝑛𝑛, the directional derivative provide a canonical Euclidean connection

𝛻𝛻𝜂𝜂𝜉𝜉 𝑥𝑥
= lim

𝑡𝑡→0

𝜉𝜉𝑥𝑥+𝑡𝑡𝜂𝜂𝑥𝑥 − 𝜉𝜉𝑥𝑥
𝑆𝑆

 Infinitely many connections could be defined on a manifold.

 On Riemannian manifold 𝑀𝑀,𝑔𝑔 , there’s one special connection which has 
good relation with the metric 𝑔𝑔. It is called the Levi-Civita connection.

 The notation of connection 𝛻𝛻 is same as the one of Riemannian gradient. 
There’s no confusion because gradient act on functions while connection or 
covariant derivative act on vector fields.



Parallel Transport

 In CG methods, we have 𝑝𝑝𝑘𝑘+1 = −𝛻𝛻𝜙𝜙𝑘𝑘+1 + 𝛽𝛽𝑘𝑘+1𝑝𝑝𝑘𝑘.

 𝑝𝑝𝑘𝑘 ∈ 𝑇𝑇𝑥𝑥𝑘𝑘 wihle 𝛻𝛻𝜙𝜙𝑘𝑘+1 ∈ 𝑇𝑇𝑥𝑥𝑘𝑘+1. They belong to different tangent spaces. To do 
the addition, we need to move the tangent vector 𝑝𝑝𝑘𝑘 at 𝑥𝑥𝑘𝑘 to 𝑥𝑥𝑘𝑘+1.

 A vector field 𝜉𝜉 along a curve 𝛾𝛾 is said to be parallel along 𝜸𝜸 if 𝛻𝛻�̇�𝛾𝜉𝜉 ≡ 0.

 If 𝜉𝜉, 𝜂𝜂 are two parallel fields along 𝛾𝛾, then 𝑔𝑔 𝜉𝜉, 𝜂𝜂 is constant along 𝛾𝛾.

 So, parallel fields along a curve neither change their lengths  nor their angles 
relative to each other, just as parallel fields in Euclidean space are.



Parallel Transport



Hessian

 In ℝ𝑛𝑛, 𝐵𝐵 = Hess 𝑓𝑓𝑥𝑥 is a symmetric matrix which can be seen as a function

Hess 𝑓𝑓𝑥𝑥:𝑇𝑇𝑥𝑥ℝ𝑛𝑛 × 𝑇𝑇𝑥𝑥ℝ𝑛𝑛 → ℝ
𝜉𝜉𝑥𝑥, 𝜂𝜂𝑥𝑥 ↦ 𝜉𝜉𝑥𝑥𝑇𝑇𝐵𝐵𝜂𝜂𝑥𝑥

 Hessian in Riemannian manifold 𝑀𝑀,𝑔𝑔 is defined as a map

Hess 𝑓𝑓𝑥𝑥:𝑇𝑇𝑥𝑥𝑀𝑀 × 𝑇𝑇𝑥𝑥𝑀𝑀 → ℝ
𝜉𝜉𝑥𝑥, 𝜂𝜂𝑥𝑥 ↦ 𝑔𝑔 𝛻𝛻𝜉𝜉𝑥𝑥𝛻𝛻𝑓𝑓, 𝜂𝜂𝑥𝑥

 Hess 𝑓𝑓𝑥𝑥 𝜉𝜉𝑥𝑥, 𝜂𝜂𝑥𝑥 can be seen as the component of the directional derivative of 
𝛻𝛻𝑓𝑓 along the tangent vector 𝜉𝜉𝑥𝑥 projecting to the direction of 𝜂𝜂𝑥𝑥.



Optimization Related Ingredients
of Riemannian Manifolds
 Retraction

 Vector transport



Optimization on Riemannian Manifold

 By replacing moving toward a direction by moving along geodesics and moving 
vectors by parallel translation, most of the traditional optimization methods 
can be applied in the manifold context.

 Computing the exact geodesics and parallel translation can be computationally 
expensive. In practice, we use related concepts such as retraction and vector 
transport instead.



Gradient Descent on 
Riemannian Manifold



Retraction

 A retraction at 𝑥𝑥 ∈ 𝑀𝑀 on a manifold 𝑀𝑀 is a smooth mapping 𝑅𝑅𝑥𝑥:𝑇𝑇𝑥𝑥𝑀𝑀 → 𝑀𝑀 s.t.

 (1) 𝑅𝑅𝑥𝑥 0𝑥𝑥 = 𝑥𝑥, where 0𝑥𝑥 ∈ 𝑇𝑇𝑥𝑥𝑀𝑀,

 (2) 𝐷𝐷𝑅𝑅𝑥𝑥 0𝑥𝑥 = 𝑖𝑖𝑑𝑑𝑇𝑇𝑥𝑥𝑀𝑀.

 For embedded submanifold 𝑀𝑀 of ℝ𝑛𝑛, 𝑅𝑅𝑥𝑥 𝜉𝜉 is often defined by “projecting” 
the point 𝑥𝑥 + 𝜉𝜉 back to 𝑀𝑀.

 This “projecting” can be based on finding the nearest point from 𝑥𝑥 + 𝜉𝜉 or on 
matrix decompositions such as QR factorization.



Retraction



Note on Retraction

 For Riemannian manifolds, the exponential map is a retraction.

 In topology, a retraction is a continuous mapping from the entire space into a 
subspace which preserves the position of all points in that subspace. 

 The Retraction we use here is different from the above one. It is better 
described as numerical version of exponential mapping.



Vector Transport

 A vector transport 𝒯𝒯 at 𝑥𝑥 ∈ 𝑀𝑀 associated with retraction 𝑅𝑅 is a smooth mapping
𝒯𝒯:𝑇𝑇𝑀𝑀⊕𝑇𝑇𝑀𝑀 → 𝑇𝑇𝑀𝑀

𝜂𝜂𝑥𝑥 , 𝜉𝜉𝑥𝑥 ↦ 𝒯𝒯𝜂𝜂𝑥𝑥 𝜉𝜉𝑥𝑥
s.t.

 (1) (associated retraction) 𝜋𝜋 𝒯𝒯𝜂𝜂𝑥𝑥 𝜉𝜉𝑥𝑥 = 𝑅𝑅 𝜂𝜂𝑥𝑥 ,

 (2) (consistency) 𝒯𝒯0𝑥𝑥 𝜉𝜉𝑥𝑥 = 𝜉𝜉𝑥𝑥,

 (3) (linearity) 𝒯𝒯𝜂𝜂𝑥𝑥 𝑎𝑎𝜉𝜉𝑥𝑥 + 𝑏𝑏𝜁𝜁𝑥𝑥 = 𝑎𝑎𝒯𝒯𝜂𝜂𝑥𝑥 𝜉𝜉𝑥𝑥 + 𝑏𝑏𝒯𝒯𝜂𝜂𝑥𝑥 𝜁𝜁𝑥𝑥 .

 Parallel translation is a particular vector transport.



Vector Transport



Geometric Line-Search Methods



Geometric Conjugate Gradient Method



Geometric Algorithms for 
Matrix Completion
 LRGeom

 R3MC

 LMaFit



MC

 The Matrix Completion problem:

arg min
𝑋𝑋∈ℝ𝑟𝑟𝑛𝑛×𝑚𝑚

𝑓𝑓 𝑋𝑋 ≔
1
2

𝒫𝒫Ω 𝑋𝑋 − 𝒫𝒫Ω 𝑋𝑋∗ 𝐹𝐹
2

 ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 is the set of rank-𝑟𝑟 𝑛𝑛 × 𝑚𝑚matrices, the function

𝒫𝒫Ω 𝑋𝑋 𝑖𝑖,𝑗𝑗 = �𝑋𝑋𝑖𝑖,𝑗𝑗 if 𝑖𝑖, 𝑗𝑗 ∈ Ω
0 otherwise



LRGeom

 LRGeom minimize 𝑓𝑓 on the manifold ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 which is seen as a submanifold of 

ℝ𝑛𝑛×𝑚𝑚 using the geometric CG method.

 It is described in [Vandereycken, Bart. "Low-rank matrix completion by 
Riemannian optimization---extended version." arXiv:1209.3834 (2012).]



LRGeom



LRGeom

ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚

𝑇𝑇𝑋𝑋𝑖𝑖ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚



LRGeom
Tangent Space

 Using SVD, 

𝑀𝑀 = ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇:𝑈𝑈 ∈ 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 ,𝑉𝑉 ∈ 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑚𝑚 , Σ = 𝑑𝑑𝑖𝑖𝑎𝑎𝑔𝑔 𝜎𝜎𝑖𝑖 ,𝜎𝜎1 ≥ ⋯ ≥ 𝜎𝜎𝑟𝑟 > 0

 The tangent space 𝑇𝑇𝑋𝑋𝑀𝑀 at 𝑋𝑋 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 ∈ 𝑀𝑀 is

𝑇𝑇𝑋𝑋𝑀𝑀 = 𝑈𝑈 𝑈𝑈⊥ ℝ𝑟𝑟×𝑟𝑟 ℝ𝑟𝑟× 𝑚𝑚−𝑟𝑟

ℝ 𝑛𝑛−𝑟𝑟 ×𝑟𝑟 0
𝑉𝑉 𝑉𝑉⊥ 𝑇𝑇

= 𝑈𝑈𝑀𝑀𝑉𝑉𝑇𝑇 + 𝑈𝑈𝑝𝑝𝑉𝑉𝑇𝑇 + 𝑈𝑈𝑉𝑉𝑝𝑝𝑇𝑇:
𝑀𝑀 ∈ ℝ𝑟𝑟×𝑟𝑟 ,
𝑈𝑈𝑝𝑝 ∈ ℝ𝑛𝑛×𝑟𝑟 ,𝑈𝑈𝑝𝑝𝑇𝑇𝑈𝑈 = 0,
𝑉𝑉𝑝𝑝 ∈ ℝ𝑚𝑚×𝑟𝑟 ,𝑉𝑉𝑝𝑝𝑇𝑇𝑉𝑉 = 0

where 𝑈𝑈⊥ is a matrix s.t. 𝑈𝑈 𝑈𝑈⊥ ∈ 𝒪𝒪 𝑛𝑛 .



LRGeom
Gradient

 The metric 𝑔𝑔 on 𝑀𝑀 is the restriction of the Euclidean inner product on ℝ𝑛𝑛×𝑚𝑚

𝑔𝑔𝑋𝑋 𝜉𝜉, 𝜂𝜂 = 𝑆𝑆𝑟𝑟 𝜉𝜉𝑇𝑇𝜂𝜂 , 𝑋𝑋 ∈ 𝑀𝑀 and 𝜉𝜉, 𝜂𝜂 ∈ 𝑇𝑇𝑋𝑋𝑀𝑀

 The Riemannian gradient is the orthogonal projection of the gradient of 𝑓𝑓
seen as a function on ℝ𝑛𝑛×𝑚𝑚 onto the tangent space of 𝑀𝑀

𝛻𝛻𝑓𝑓 𝑋𝑋 = 𝑃𝑃𝑇𝑇𝑋𝑋𝑀𝑀 𝒫𝒫Ω 𝑋𝑋 − 𝐴𝐴

 𝑃𝑃𝑇𝑇𝑋𝑋𝑀𝑀 is the orthogonal projection onto the tangent space at 𝑋𝑋

𝑃𝑃𝑇𝑇𝑋𝑋𝑀𝑀:ℝ𝑛𝑛×𝑚𝑚 → 𝑇𝑇𝑋𝑋𝑀𝑀
𝑍𝑍 ↦ 𝑃𝑃𝑈𝑈𝑍𝑍𝑃𝑃𝑉𝑉 + 𝑃𝑃𝑈𝑈⊥𝑍𝑍𝑃𝑃𝑉𝑉 + 𝑃𝑃𝑈𝑈𝑍𝑍𝑃𝑃𝑉𝑉⊥

where 𝑃𝑃𝑈𝑈 ≔ 𝑈𝑈𝑈𝑈𝑇𝑇 and 𝑃𝑃𝑈𝑈⊥ ≔ 1 − 𝑃𝑃𝑈𝑈.



LRGeom
Retraction

 Retraction is based on the orthogonal projection 𝑃𝑃𝑀𝑀
𝑅𝑅𝑋𝑋:𝑇𝑇𝑋𝑋𝑀𝑀 → 𝑀𝑀

𝜉𝜉 ↦ 𝑃𝑃𝑀𝑀 𝑋𝑋 + 𝜉𝜉

where 𝑃𝑃𝑀𝑀 𝑌𝑌 ≔ arg min
𝑍𝑍∈𝑀𝑀

𝑌𝑌 − 𝑍𝑍 𝐹𝐹.

 This retraction is well-defined locally.

 𝑃𝑃𝑀𝑀 𝑌𝑌 can be computed using SVD. Given 𝑌𝑌 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇

𝑃𝑃𝑀𝑀 𝑌𝑌 = Σ𝑖𝑖=1𝑟𝑟 𝜎𝜎𝑖𝑖𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖𝑇𝑇



LRGeom
Vector Transport

 Introduce a shorthand notation for vector transport

𝒯𝒯𝑋𝑋→𝑌𝑌:𝑇𝑇𝑋𝑋𝑀𝑀 → 𝑇𝑇𝑌𝑌𝑀𝑀
𝜉𝜉 ↦ 𝒯𝒯𝐹𝐹𝑋𝑋−1 𝑌𝑌 𝜉𝜉

 Vector transport is defined by orthogonally projecting the translated tangent 
vector in ℝ𝑛𝑛×𝑚𝑚

𝒯𝒯𝑋𝑋→𝑌𝑌:𝑇𝑇𝑋𝑋𝑀𝑀 → 𝑇𝑇𝑌𝑌𝑀𝑀
𝜉𝜉 ↦ 𝑃𝑃𝑇𝑇𝑌𝑌𝑀𝑀 𝜉𝜉



LRGeom
Vector Transport



LRGeom
Conjugate Direction

 The conjugate search direction 𝜂𝜂𝑖𝑖 is 

𝜂𝜂𝑖𝑖 = −𝛻𝛻𝑓𝑓 𝑋𝑋𝑖𝑖 + 𝛽𝛽𝑖𝑖𝒯𝒯𝑋𝑋𝑖𝑖−1→𝑋𝑋𝑖𝑖 𝜂𝜂𝑖𝑖−1

 𝛽𝛽𝑖𝑖 is chosen by the Polak-Ribière Method

𝛽𝛽𝑖𝑖 =
𝛻𝛻𝑓𝑓 𝑋𝑋𝑖𝑖 ,𝛻𝛻𝑓𝑓 𝑋𝑋𝑖𝑖 − 𝒯𝒯𝑋𝑋𝑖𝑖−1→𝑋𝑋𝑖𝑖 𝛻𝛻𝑓𝑓 𝑋𝑋𝑖𝑖−1

𝛻𝛻𝑓𝑓 𝑋𝑋𝑖𝑖−1 ,𝛻𝛻𝑓𝑓 𝑋𝑋𝑖𝑖−1



LRGeom
Line Search

 The line search sub-procedure of the CG method uses the following value 𝑆𝑆∗ as 
the initial guess for the step size.

𝑆𝑆∗ ≔ arg min
𝑡𝑡
𝑓𝑓 𝑋𝑋 + 𝑆𝑆𝜂𝜂 =

1
2

arg min
𝑡𝑡

𝒫𝒫Ω 𝑋𝑋 − 𝑋𝑋∗ + 𝑆𝑆𝒫𝒫Ω 𝜂𝜂 𝐹𝐹
2

 It has a closed-form solution

𝑆𝑆∗ =
𝒫𝒫Ω 𝜂𝜂 ,𝒫𝒫Ω 𝐴𝐴 − 𝑋𝑋
𝒫𝒫Ω 𝜂𝜂 ,𝒫𝒫Ω 𝜂𝜂



R3MC

 R3MC is also a Geometric CG method.

 Motivated by the 3-factor factorization 𝑋𝑋 = 𝑈𝑈𝑅𝑅𝑉𝑉𝑇𝑇, R3MC optimize in the 
quotient space

𝑀𝑀 ≔ ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 = 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 × 𝐺𝐺𝐺𝐺 𝑟𝑟 × ⁄𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 𝒪𝒪 𝑟𝑟 × 𝒪𝒪 𝑟𝑟

where 𝒪𝒪 𝑟𝑟 × 𝒪𝒪 𝑟𝑟 act on �𝑀𝑀 ≔ 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 × 𝐺𝐺𝐺𝐺 𝑟𝑟 × 𝑆𝑆𝑆𝑆 𝑟𝑟,𝑛𝑛 as

𝒪𝒪 𝑟𝑟 × 𝒪𝒪 𝑟𝑟 × �𝑀𝑀 → �𝑀𝑀

𝑆𝑆1,𝑆𝑆2 , 𝑈𝑈,𝑅𝑅,𝑉𝑉 ↦ 𝑈𝑈𝑆𝑆1,𝑆𝑆1𝑇𝑇𝑅𝑅𝑆𝑆2,𝑉𝑉𝑆𝑆2
 R3MC is defined in [Mishra, B., and R. Sepulchre. "R3MC: A Riemannian Three-

Factor Algorithm for Low-Rank Matrix Completion." (2013).]



R3MC



R3MC
Conceptual Schema

 Let ℰ ≔ ℝ𝑛𝑛×𝑟𝑟 × ℝ𝑟𝑟×𝑟𝑟 × ℝ𝑚𝑚×𝑟𝑟, then we have

ℰ, �̅�𝑔 Riemannian submanifold
⊃ �𝑀𝑀, �̅�𝑔

Riemannian quotient
𝑀𝑀,𝑔𝑔

 This view of the search space allows us to derive various notions on the 
Riemannian quotient manifold 𝑀𝑀 in a systematic way.



R3MC
Tangent Space

 We represent an element 𝑥𝑥 of the quotient space 𝑀𝑀 by 𝑥𝑥 = �̅�𝑥 where �̅�𝑥 ∈ �𝑀𝑀
and has matrix representation �̅�𝑥 = 𝑈𝑈,𝑅𝑅,𝑉𝑉 .

 Tangent space of the total space �𝑀𝑀 at �̅�𝑥

𝑇𝑇�̅�𝑥 �𝑀𝑀 = 𝑍𝑍𝑈𝑈,𝑍𝑍𝐹𝐹 ,𝑍𝑍𝑉𝑉 ∈ ℝ𝑛𝑛×𝑟𝑟 × ℝ𝑟𝑟×𝑟𝑟 × ℝ𝑚𝑚×𝑟𝑟:
𝑈𝑈𝑇𝑇𝑍𝑍𝑈𝑈 + 𝑍𝑍𝑈𝑈𝑇𝑇𝑈𝑈 = 0
𝑉𝑉𝑇𝑇𝑍𝑍𝑉𝑉 + 𝑍𝑍𝑉𝑉𝑇𝑇𝑉𝑉 = 0



R3MC
Metric

 The metric �̅�𝑔 on 𝑇𝑇�̅�𝑥 �𝑀𝑀 is

�̅�𝑔�̅�𝑥 ̅𝜉𝜉�̅�𝑥, �̅�𝜂�̅�𝑥 = 𝑆𝑆𝑟𝑟 𝑅𝑅𝑅𝑅𝑇𝑇 ̅𝜉𝜉𝑈𝑈𝑇𝑇�̅�𝜂𝑈𝑈 + 𝑆𝑆𝑟𝑟 ̅𝜉𝜉𝐹𝐹𝑇𝑇�̅�𝜂𝐹𝐹 + 𝑆𝑆𝑟𝑟 𝑅𝑅𝑇𝑇𝑅𝑅 ̅𝜉𝜉𝑉𝑉𝑇𝑇�̅�𝜂𝑉𝑉

 The metric 𝑔𝑔 on the quotient space 𝑀𝑀 is induced by �̅�𝑔.

 This metric captures the characterization of the cost function 𝑓𝑓 which leads 
to good preconditioning properties. 

 In fact, this metric is induced by the Euclidean Hessian of 𝑓𝑓 (using a diagonal 
approximation of the full Hessian).



R3MC
Vertical Space

 The vertical space 𝒱𝒱�̅�𝑥 �𝑀𝑀 of 𝑇𝑇�̅�𝑥 �𝑀𝑀 at �̅�𝑥 = 𝑈𝑈,𝑅𝑅,𝑉𝑉 has the form

𝒱𝒱�̅�𝑥 �𝑀𝑀 = 𝑈𝑈Ω1,𝑅𝑅Ω2 − Ω1𝑅𝑅,𝑉𝑉Ω2 :
Ω1𝑇𝑇 = −Ω1
Ω2𝑇𝑇 = −Ω2



R3MC
Horizontal Space

 The horizontal space ℋ�̅�𝑥 �𝑀𝑀 of 𝑇𝑇�̅�𝑥 �𝑀𝑀 at �̅�𝑥 = 𝑈𝑈,𝑅𝑅,𝑉𝑉 has the form

ℋ�̅�𝑥 �𝑀𝑀 = �̅�𝜂�̅�𝑥 = �̅�𝜂𝑈𝑈, �̅�𝜂𝐹𝐹 , �̅�𝜂𝑈𝑈 ∈ 𝑇𝑇�̅�𝑥 �𝑀𝑀: 𝑅𝑅𝑅𝑅
𝑇𝑇𝑈𝑈𝑇𝑇�̅�𝜂𝑈𝑈 − �̅�𝜂𝐹𝐹𝑅𝑅𝑇𝑇 is symmetric

𝑅𝑅𝑇𝑇𝑅𝑅𝑉𝑉𝑇𝑇�̅�𝜂𝑉𝑉 + 𝑅𝑅𝑇𝑇�̅�𝜂𝐹𝐹 is symmetric

 It is computed by the condition that ℋ�̅�𝑥 �𝑀𝑀 = 𝒱𝒱�̅�𝑥 �𝑀𝑀 ⊥.



R3MC
Horizontal Space

 Let �̅�𝑥 = 𝑈𝑈,𝑅𝑅,𝑉𝑉 , �̅�𝜂�̅�𝑥 = �̅�𝜂𝑈𝑈, �̅�𝜂𝐹𝐹 , �̅�𝜂𝑉𝑉 ∈ ℋ�̅�𝑥 �𝑀𝑀, ̅𝜉𝜉�̅�𝑥 = 𝑈𝑈Ω1,𝑅𝑅Ω2,𝑉𝑉Ω2 ∈ 𝒱𝒱�̅�𝑥 �𝑀𝑀, then

�̅�𝑔�̅�𝑥 �̅�𝜂�̅�𝑥, ̅𝜉𝜉�̅�𝑥 = 𝑆𝑆𝑟𝑟 𝑅𝑅𝑇𝑇𝑅𝑅�̅�𝜂𝑈𝑈𝑇𝑇𝑈𝑈Ω1 + 𝑆𝑆𝑟𝑟 Ω2𝑇𝑇𝑅𝑅𝑇𝑇�̅�𝜂𝐹𝐹 − 𝑅𝑅𝑇𝑇Ω1𝑇𝑇�̅�𝜂𝐹𝐹 + 𝑆𝑆𝑟𝑟 𝑅𝑅𝑇𝑇𝑅𝑅�̅�𝜂𝑉𝑉𝑇𝑇𝑉𝑉Ω2

= 𝑆𝑆𝑟𝑟 −𝑅𝑅𝑇𝑇𝑅𝑅𝑈𝑈𝑇𝑇�̅�𝜂𝑈𝑈Ω1 + 𝑆𝑆𝑟𝑟 �̅�𝜂𝐹𝐹𝑅𝑅𝑇𝑇Ω1 + 𝑆𝑆𝑟𝑟 −𝑅𝑅𝑇𝑇𝑅𝑅𝑉𝑉𝑇𝑇�̅�𝜂𝑉𝑉Ω2 + 𝑆𝑆𝑟𝑟 −𝑅𝑅𝑇𝑇�̅�𝜂𝐹𝐹Ω2

= 𝑆𝑆𝑟𝑟 −𝑅𝑅𝑇𝑇𝑅𝑅𝑈𝑈𝑇𝑇�̅�𝜂𝑈𝑈Ω1 + �̅�𝜂𝐹𝐹𝑅𝑅𝑇𝑇 Ω1 + 𝑆𝑆𝑟𝑟 −𝑅𝑅𝑇𝑇𝑅𝑅𝑉𝑉𝑇𝑇�̅�𝜂𝑉𝑉 − 𝑅𝑅𝑇𝑇�̅�𝜂𝐹𝐹 Ω2 = 0

= 0

 Then −𝑅𝑅𝑇𝑇𝑅𝑅𝑈𝑈𝑇𝑇�̅�𝜂𝑈𝑈Ω1 + �̅�𝜂𝐹𝐹𝑅𝑅𝑇𝑇 and −𝑅𝑅𝑇𝑇𝑅𝑅𝑉𝑉𝑇𝑇�̅�𝜂𝑉𝑉 − 𝑅𝑅𝑇𝑇�̅�𝜂𝐹𝐹 must be symmetric.



R3MC
Projection Ψ

 Since �𝑀𝑀, �̅�𝑔 ⊂ ℰ, �̅�𝑔 , we define the projection operator Ψ�̅�𝑥 which project 
𝑇𝑇�̅�𝑥ℰ = ℰ onto 𝑇𝑇�̅�𝑥 �𝑀𝑀.

 This can be done by subtracting the normal component. The normal space

𝑁𝑁�̅�𝑥 �𝑀𝑀 = 𝑈𝑈𝑁𝑁1, 0,𝑉𝑉𝑁𝑁2 :
𝑁𝑁1,𝑁𝑁2 ∈ ℝ𝑟𝑟×𝑟𝑟

𝑁𝑁1𝑅𝑅𝑅𝑅𝑇𝑇 and 𝑁𝑁2𝑅𝑅𝑇𝑇𝑅𝑅 are symmetric

 So,
Ψ�̅�𝑥:ℰ → 𝑇𝑇�̅�𝑥 �𝑀𝑀

𝑍𝑍𝑈𝑈,𝑍𝑍𝐹𝐹 ,𝑍𝑍𝑉𝑉 ↦ 𝑍𝑍𝑈𝑈 − 𝑈𝑈𝐵𝐵𝑈𝑈 𝑅𝑅𝑅𝑅𝑇𝑇 −1,𝑍𝑍𝐹𝐹 ,𝑍𝑍𝑉𝑉 − 𝑉𝑉𝐵𝐵𝑉𝑉 𝑅𝑅𝑇𝑇𝑅𝑅 −1

 Here 𝐵𝐵𝑈𝑈 and 𝐵𝐵𝑉𝑉 are 𝑟𝑟 × 𝑟𝑟 symmetric matrices which satisfies the Lyapunov 
Equations

𝑅𝑅𝑅𝑅𝑇𝑇𝐵𝐵𝑈𝑈 + 𝐵𝐵𝑈𝑈𝑅𝑅𝑅𝑅𝑇𝑇 = 𝑅𝑅𝑅𝑅𝑇𝑇 𝑈𝑈𝑇𝑇𝑍𝑍𝑈𝑈 + 𝑍𝑍𝑈𝑈𝑇𝑇𝑈𝑈 𝑅𝑅𝑅𝑅𝑇𝑇

𝑅𝑅𝑇𝑇𝑅𝑅𝐵𝐵𝑉𝑉 + 𝐵𝐵𝑉𝑉𝑅𝑅𝑇𝑇𝑅𝑅 = 𝑅𝑅𝑇𝑇𝑅𝑅 𝑉𝑉𝑇𝑇𝑍𝑍𝑉𝑉 + 𝑍𝑍𝑉𝑉𝑇𝑇𝑉𝑉 𝑅𝑅𝑅𝑅𝑇𝑇



R3MC
Projection Ψ

 Let 𝑍𝑍𝑈𝑈 = 𝑈𝑈𝑁𝑁1 normal part + 𝑇𝑇 tangent part . 

 Let 𝐵𝐵𝑈𝑈 ≔ 𝑁𝑁1 𝑅𝑅𝑅𝑅𝑇𝑇 , 𝑇𝑇 = 𝑈𝑈Ω + 𝑈𝑈⊥𝐾𝐾 where 𝐵𝐵𝑈𝑈 is symmetric and Ω anti-symmetric.

 Then 
𝑍𝑍𝑈𝑈 = 𝑈𝑈𝑁𝑁1 + 𝑇𝑇

= 𝑈𝑈 𝐵𝐵𝑈𝑈 + Ω𝑅𝑅𝑅𝑅𝑇𝑇 𝑅𝑅𝑅𝑅𝑇𝑇 −1 + 𝑈𝑈2𝐾𝐾

 So, 𝑈𝑈𝑇𝑇𝑍𝑍𝑈𝑈 = 𝐵𝐵𝑈𝑈 + Ω𝑅𝑅𝑅𝑅𝑇𝑇 𝑅𝑅𝑅𝑅𝑇𝑇 −1 and 𝑍𝑍𝑈𝑈𝑇𝑇𝑈𝑈 = 𝑅𝑅𝑅𝑅𝑇𝑇 −1 𝐵𝐵𝑈𝑈 − 𝑅𝑅𝑅𝑅𝑇𝑇Ω . We get the 
Lyapunov equations

𝑅𝑅𝑅𝑅𝑇𝑇𝐵𝐵𝑈𝑈 + 𝐵𝐵𝑈𝑈𝑅𝑅𝑅𝑅𝑇𝑇 = 𝑅𝑅𝑅𝑅𝑇𝑇 𝑈𝑈𝑇𝑇𝑍𝑍𝑈𝑈 + 𝑍𝑍𝑈𝑈𝑇𝑇𝑈𝑈 𝑅𝑅𝑅𝑅𝑇𝑇

𝑅𝑅𝑇𝑇𝑅𝑅𝐵𝐵𝑉𝑉 + 𝐵𝐵𝑉𝑉𝑅𝑅𝑇𝑇𝑅𝑅 = 𝑅𝑅𝑇𝑇𝑅𝑅 𝑉𝑉𝑇𝑇𝑍𝑍𝑉𝑉 + 𝑍𝑍𝑉𝑉𝑇𝑇𝑉𝑉 𝑅𝑅𝑅𝑅𝑇𝑇



R3MC
Lyapunov Equations

 Lyapunov equation

𝑅𝑅𝑅𝑅𝑇𝑇𝐵𝐵𝑈𝑈 + 𝐵𝐵𝑈𝑈𝑅𝑅𝑅𝑅𝑇𝑇 = 𝐸𝐸

can be solved efficiently by diagonalizing 𝑅𝑅(using SVD).



R3MC
Projection Π

 The projection onto the horizontal space is done by the operator Π

Π�̅�𝑥:𝑇𝑇�̅�𝑥 �𝑀𝑀 → ℋ�̅�𝑥 �𝑀𝑀
̅𝜉𝜉�̅�𝑥 ↦ ̅𝜉𝜉𝑈𝑈 − 𝑈𝑈Ω1, ̅𝜉𝜉𝐹𝐹 + Ω1𝑅𝑅 − 𝑅𝑅Ω2, ̅𝜉𝜉𝑉𝑉 − 𝑉𝑉Ω2

 Here Ω1 and Ω2 are 𝑟𝑟 × 𝑟𝑟 skew symmetric matrices which satisfies the 
Lyapunov equations

𝑅𝑅𝑅𝑅𝑇𝑇Ω1 + Ω1𝑅𝑅𝑅𝑅𝑇𝑇 − 𝑅𝑅Ω2𝑅𝑅𝑇𝑇 = Skew 𝑈𝑈𝑇𝑇 ̅𝜉𝜉𝑈𝑈𝑅𝑅𝑅𝑅𝑇𝑇 + Skew 𝑅𝑅 ̅𝜉𝜉𝐹𝐹𝑇𝑇

𝑅𝑅𝑇𝑇𝑅𝑅Ω2 + Ω2𝑅𝑅𝑇𝑇𝑅𝑅 − 𝑅𝑅𝑇𝑇Ω1𝑅𝑅 = Skew 𝑉𝑉𝑇𝑇 ̅𝜉𝜉𝑉𝑉𝑅𝑅𝑇𝑇𝑅𝑅 + Skew 𝑅𝑅𝑇𝑇 ̅𝜉𝜉𝐹𝐹



R3MC
Gradient

 Let ̅𝑓𝑓 �̅�𝑥 ≔ 1
2
𝒫𝒫Ω 𝑈𝑈𝑅𝑅𝑉𝑉𝑇𝑇 − 𝒫𝒫Ω 𝑋𝑋∗ 𝐹𝐹

2 be the cost function on �𝑀𝑀, �̅�𝑔 and 𝑓𝑓 be 
its induced function on the quotient manifold 𝑀𝑀,𝑔𝑔 .

 Denote 𝑆𝑆 ≔ 𝒫𝒫Ω 𝑈𝑈𝑅𝑅𝑉𝑉𝑇𝑇 − 𝒫𝒫Ω 𝑋𝑋∗ , the gradient 𝛻𝛻�̅�𝑥 ̅𝑓𝑓 of ̅𝑓𝑓 on ℰ, �̅�𝑔 can be 
written in terms of 𝑆𝑆

𝛻𝛻�̅�𝑥 ̅𝑓𝑓 = 𝑆𝑆𝑉𝑉𝑅𝑅𝑇𝑇 𝑅𝑅𝑅𝑅𝑇𝑇 −1,𝑈𝑈𝑇𝑇𝑆𝑆𝑉𝑉, 𝑆𝑆𝑇𝑇𝑈𝑈𝑅𝑅 𝑅𝑅𝑇𝑇𝑅𝑅 −1

 The horizontal lift of 𝛻𝛻𝑥𝑥𝑓𝑓 is equal to the gradient of ̅𝑓𝑓 on �𝑀𝑀, �̅�𝑔 which is the 
horizontal projection of gradient of ̅𝑓𝑓 on ℰ, �̅�𝑔

𝛻𝛻𝑥𝑥𝑓𝑓 = Ψ�̅�𝑥 𝛻𝛻�̅�𝑥 ̅𝑓𝑓



R3MC
Retraction

 The retraction here is obtained by matrix factorization

𝑅𝑅�̅�𝑥 ̅𝜉𝜉�̅�𝑥 = qf 𝑈𝑈 + ̅𝜉𝜉𝑈𝑈 ,𝑅𝑅 + ̅𝜉𝜉𝐹𝐹 , qf 𝑉𝑉 + ̅𝜉𝜉𝑉𝑉

 Here, ̅𝜉𝜉�̅�𝑥 ∈ ℋ�̅�𝑥 �𝑀𝑀 and uf is the orthogonal part of a QR decomposition.

 uf 𝐴𝐴 can be computed efficiently by performing the SVD of 𝐴𝐴.



R3MC
Vector Transport

 Vector transport here is similar to the one of LRGeom.

 The horizontal lift of the vector transport

𝒯𝒯𝑥𝑥→𝑦𝑦:ℋ�̅�𝑥 �𝑀𝑀 → ℋ�𝑦𝑦 �𝑀𝑀
̅𝜉𝜉�̅�𝑥 ↦ Π�𝑦𝑦 Ψ�𝑦𝑦 ̅𝜉𝜉�̅�𝑥



R3MC
Line Search

 The initial guess 𝑆𝑆∗ for the step size of the line search sub-procedure is 
obtained by solving the min problem

𝑆𝑆∗ = arg min
𝑡𝑡

𝒫𝒫Ω (𝑈𝑈 − 𝑆𝑆 ̅𝜉𝜉𝑈𝑈)(𝑅𝑅 − 𝑆𝑆 ̅𝜉𝜉𝐹𝐹)(𝑉𝑉 − 𝑆𝑆 ̅𝜉𝜉𝑉𝑉) − 𝒫𝒫Ω 𝑋𝑋∗ 𝐹𝐹
2

 It can be accelerated by computing a degree 2 polynomial approximation

𝑆𝑆∗accel = arg min
𝑡𝑡

𝒫𝒫Ω 𝑈𝑈𝑅𝑅𝑉𝑉𝑇𝑇 − 𝑆𝑆 ̅𝜉𝜉𝑈𝑈𝑅𝑅𝑉𝑉𝑇𝑇 + 𝑈𝑈 ̅𝜉𝜉𝐹𝐹𝑉𝑉𝑇𝑇 + 𝑈𝑈𝑅𝑅 ̅𝜉𝜉𝑉𝑉 − 𝒫𝒫Ω 𝑋𝑋∗
𝐹𝐹

2

which has a closed form solution.



LMaFit

 LMaFit---a Low-rank Matrix Fitting algorithm.

 It is described in [Wen, Zaiwen, Wotao Yin, and Yin Zhang. "Solving a low-rank 
factorization model for matrix completion by a nonlinear successive over-
relaxation algorithm." Mathematical Programming Computation 4.4 (2012): 
333-361.]



LMaFit
Model

 LMaFit aims at finding a low-rank (rank up to 𝑟𝑟) approximation 𝑊𝑊 to 𝑀𝑀 s.t. 
1
2
𝒫𝒫Ω 𝑊𝑊 −𝑀𝑀 𝐹𝐹

2 is minimized.

 The model is

where 𝑋𝑋 ∈ ℝ𝑚𝑚×𝑟𝑟 , 𝑌𝑌 ∈ ℝ𝑟𝑟×𝑛𝑛, 𝑍𝑍 ∈ ℝ𝑚𝑚×𝑛𝑛.

 It is solved by a tuned version of block-coordinate descent algorithm or a 
nonlinear SOR .



LMaFit
Jacobi Iteration

 The simplest iterative method for the 𝐴𝐴𝑥𝑥 = 𝑏𝑏 problem is Jacobi iteration.

 For the 3 × 3 case,

 If we write 

Jacobi iteration can be written as 𝐷𝐷𝐴𝐴𝑥𝑥 𝑘𝑘 = − 𝐺𝐺𝐴𝐴 + 𝑈𝑈𝐴𝐴 𝑥𝑥 𝑘𝑘−1 + 𝑏𝑏.

It will convergent if 𝐷𝐷𝐴𝐴−1 𝐺𝐺𝐴𝐴 + 𝑈𝑈𝐴𝐴 < 1.



LMaFit
Gauss-Seidel Iteration

 If utilize the most recent solution estimate, we obtain the Gauss-Seidel 
iteration

 It can be written as 𝐷𝐷𝐴𝐴 + 𝐺𝐺𝐴𝐴 𝑥𝑥 𝑘𝑘 = −𝑈𝑈𝐴𝐴𝑥𝑥 𝑘𝑘−1 + 𝑏𝑏.

 The convergence rate is determined by 𝐷𝐷𝐴𝐴 + 𝐺𝐺𝐴𝐴 −1𝑈𝑈𝐴𝐴 .



Fixed Point and Convergence

 Write 
𝑓𝑓 𝑥𝑥 = − 𝐷𝐷𝐴𝐴 + 𝐺𝐺𝐴𝐴 −1𝑈𝑈𝐴𝐴𝑥𝑥 + 𝐷𝐷𝐴𝐴 + 𝐺𝐺𝐴𝐴 −1 𝑏𝑏

Then, the solution 𝑥𝑥∗ is the fixed point of 𝑓𝑓 𝑥𝑥 . i.e. 𝑓𝑓 𝑥𝑥∗ = 𝑥𝑥∗.

 So, 
𝑓𝑓 𝑥𝑥 𝑘𝑘 − 𝑥𝑥∗ = − 𝐷𝐷𝐴𝐴 + 𝐺𝐺𝐴𝐴 −1𝑈𝑈𝐴𝐴 𝑥𝑥 𝑘𝑘−1 − 𝑥𝑥∗

 We see that
𝑥𝑥 𝑘𝑘 − 𝑥𝑥∗ ≤ 𝐷𝐷𝐴𝐴 + 𝐺𝐺𝐴𝐴 −1𝑈𝑈𝐴𝐴 𝑥𝑥 𝑘𝑘−1 − 𝑥𝑥∗

 If 𝐷𝐷𝐴𝐴 + 𝐺𝐺𝐴𝐴 −1𝑈𝑈𝐴𝐴 < 1 the iteration 𝑥𝑥 𝑘𝑘 = 𝑓𝑓 𝑥𝑥 𝑘𝑘−1 will converge to 𝑥𝑥∗.



LMaFit
SOR

 We can accelerate Gauss-Seidel by a slight modification by 𝜔𝜔

𝜔𝜔𝐷𝐷𝐴𝐴 + 𝐺𝐺𝐴𝐴 𝑥𝑥 𝑘𝑘 = − 1 − 𝜔𝜔 𝐷𝐷𝐴𝐴 + 𝑈𝑈𝐴𝐴 𝑥𝑥 𝑘𝑘−1 + 𝑏𝑏

 The idea is to choose 𝜔𝜔 s.t. 𝜔𝜔𝐷𝐷𝐴𝐴 + 𝐺𝐺𝐴𝐴 −1 1 − 𝜔𝜔 𝐷𝐷𝐴𝐴 + 𝑈𝑈𝐴𝐴 be small.

 This defines the method of Successive Over-Relaxation (SOR).

 LMaFit is a nonlinear SOR which modifies a nonlinear (block) Gauss-Seidel 
scheme.



LMaFit
Nonlinear Gauss-Seidel Method

 It is a straightforward alternating minimization scheme which updates the 
three variables 𝑋𝑋,𝑌𝑌,𝑍𝑍 w.r.t. each one separately while fixing the other two.

 For example, by fixing 𝑌𝑌 and 𝑍𝑍, compute the new 𝑋𝑋+

where 𝑌𝑌† is the Moore-Penrose pseudo-inverse of 𝑌𝑌.

 The procedure is



LMaFit
Moore-Penrose Pseudo-Inverse

 We start by considering the minimization problem
𝑥𝑥𝑏𝑏∗ = arg min

𝑥𝑥∈ℝ𝑛𝑛
𝐴𝐴𝑥𝑥 − 𝑏𝑏 𝐹𝐹

2

where 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛.

 If 𝐴𝐴 has full column rank, this is the ordinary least square problem which has a 
geometric interpretation:

 Let ran(𝐴𝐴) denote the space span by column vectors 𝐴𝐴1,𝐴𝐴2,⋯ ,𝐴𝐴𝑛𝑛 of 𝐴𝐴. Then 
we have 𝐴𝐴𝑥𝑥𝑏𝑏∗ = 𝑏𝑏∥ where 𝑏𝑏∥ is the orthogonal projection of 𝑏𝑏 = 𝑏𝑏⊥ + 𝑏𝑏∥ ∈ ℝ𝑚𝑚

into ran 𝐴𝐴 . 

 𝑥𝑥𝑏𝑏∗ is the coordinate of 𝑏𝑏∥ under the basis of 𝐴𝐴1,𝐴𝐴2,⋯ ,𝐴𝐴𝑛𝑛.



LMaFit
Moore-Penrose Pseudo-Inverse

 In the case that 𝐴𝐴 does not have full column rank, the solution is not unique.

 All the solutions of arg min
𝑥𝑥∈ℝ𝑛𝑛

𝐴𝐴𝑥𝑥 − 𝑏𝑏 𝐹𝐹
2 form a affine vector subspace 

𝑆𝑆𝑏𝑏 = 𝑦𝑦 ∈ ℝ𝑛𝑛:𝐴𝐴𝑦𝑦 = 𝑏𝑏∥
Let 𝑥𝑥𝑏𝑏∗ be the shortest one in 𝑆𝑆𝑏𝑏.

 𝑆𝑆𝑏𝑏 is the translation of the vector space
𝑆𝑆 ≔ 𝑦𝑦 ∈ ℝ𝑛𝑛:𝐴𝐴𝑦𝑦 = 0 = ran 𝐴𝐴𝑇𝑇 ⊥

 𝑥𝑥∗ is the unique element in 𝑆𝑆𝑏𝑏 that satisfies 𝑥𝑥∗ ⊥ 𝑆𝑆, i.e. 𝑥𝑥∗ ∈ ran 𝐴𝐴𝑇𝑇 . 
So 𝑥𝑥∗ can be obtained by orthogonal projecting any element 𝑦𝑦 ∈ 𝑆𝑆𝑏𝑏 to the 
subspace ran(𝐴𝐴𝑇𝑇).



LMaFit
Moore-Penrose Pseudo-Inverse

 So, 𝑥𝑥𝑏𝑏∗ for the problem 𝑥𝑥𝑏𝑏∗ = arg min
𝑥𝑥∈ℝ𝑛𝑛

𝐴𝐴𝑥𝑥 − 𝑏𝑏 𝐹𝐹
2 can be obtained by 

 (1) orthogonally project 𝑏𝑏 into ran(𝐴𝐴) and get 𝑏𝑏∥ ∈ ran(𝐴𝐴).

 (2) solve 𝐴𝐴𝑦𝑦 = 𝑏𝑏∥ and get any solution 𝑦𝑦.

 (3) orthogonally project 𝑦𝑦 to ran(𝐴𝐴𝑇𝑇) to get the shortest solution 𝑥𝑥𝑏𝑏∗.

 Since all the relations are linear, we can see 

𝑥𝑥 𝜆𝜆𝑏𝑏1+𝜇𝜇𝑏𝑏2
∗ = 𝜆𝜆𝑥𝑥𝑏𝑏1

∗ + 𝜇𝜇𝑥𝑥𝑏𝑏2
∗



LMaFit
Moore-Penrose Pseudo-Inverse

 Let 𝑥𝑥𝑖𝑖∗ be the solution 𝑥𝑥𝑒𝑒𝑖𝑖
∗ where 𝑒𝑒𝑖𝑖 = 0,⋯ , 0, 1, 0,⋯ , 0 𝑇𝑇 ∈ ℝ𝑚𝑚

and let 
𝐴𝐴† ≔ [𝑥𝑥1∗ 𝑥𝑥2∗ ⋯ 𝑥𝑥𝑚𝑚∗ ]

be the 𝑛𝑛 × 𝑚𝑚 matrix composed of 𝑥𝑥𝑖𝑖∗. 

 Then it’s easy to see
𝑥𝑥𝑏𝑏∗ = 𝐴𝐴†𝑏𝑏

 𝐴𝐴† is called the Moore-Penrose Pseudo-Inverse of 𝐴𝐴.



LMaFit
Moore-Penrose Pseudo-Inverse

 Consider the matrix version problem
𝑋𝑋𝐵𝐵∗ = arg min

𝑋𝑋∈ℝ𝑛𝑛×𝑘𝑘
𝐴𝐴𝑋𝑋 − 𝐵𝐵 𝐹𝐹

2

where 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛, 𝐵𝐵 ∈ ℝ𝑚𝑚×𝑘𝑘 and 𝑋𝑋 ∈ ℝ𝑛𝑛×𝑘𝑘.

 Let 𝐵𝐵1,𝐵𝐵2,⋯ ,𝐵𝐵𝑘𝑘 be the column vectors of 𝐵𝐵 and 𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑘𝑘 be the column 
vectors of 𝑋𝑋.

 Observe that
𝑋𝑋𝐵𝐵∗ 𝑖𝑖 = arg min

𝑋𝑋𝑖𝑖∈ℝ𝑛𝑛
𝐴𝐴𝑋𝑋𝑖𝑖 − 𝐵𝐵𝑖𝑖 𝐹𝐹

2

 We have 𝑋𝑋𝐵𝐵∗ = 𝐴𝐴†𝐵𝐵.

 Similarly, 𝐵𝐵𝐴𝐴† = arg min
𝑋𝑋∈ℝ𝑚𝑚×𝑛𝑛

𝑋𝑋𝐴𝐴 − 𝐵𝐵 𝐹𝐹
2 where 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑘𝑘, 𝐵𝐵 ∈ ℝ𝑚𝑚×𝑘𝑘 and 𝑋𝑋 ∈ ℝ𝑚𝑚×𝑛𝑛.



LMaFit
Moore-Penrose Pseudo-Inverse

 Pseudo-Inverse 𝐴𝐴† can be computed by SVD of 𝐴𝐴.

 If 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑟𝑟 where 𝑛𝑛 ≫ 𝑟𝑟, we can use the relation

𝐴𝐴† ≡ 𝐴𝐴𝑇𝑇𝐴𝐴 †𝐴𝐴𝑇𝑇

to accelerate computation.

 If 𝐴𝐴 has full column rank, 𝐴𝐴† = 𝐴𝐴𝑇𝑇𝐴𝐴 −1𝐴𝐴𝑇𝑇.

 If 𝐴𝐴 is invertible, then 𝐴𝐴† = 𝐴𝐴−1.



LMaFit
Nonlinear SOR

 Using 𝜔𝜔 ≥ 1 as the extrapolation factor to the nonlinear Gauss-Seidel method, 
the nonlinear SOR method is

 Basic Gauss-Seidel method correspond to 𝜔𝜔 = 1.



LMaFit
Updating 𝜔𝜔

 Define the residual ratio 𝛾𝛾 𝜔𝜔

𝛾𝛾 𝜔𝜔 =
𝒫𝒫Ω 𝑋𝑋∗ − 𝑋𝑋+ 𝜔𝜔 𝑌𝑌+ 𝜔𝜔 𝐹𝐹

𝒫𝒫Ω 𝑋𝑋∗ − 𝑋𝑋𝑌𝑌 𝐹𝐹

 If 𝛾𝛾 𝜔𝜔 < 1, the step is “successful”;
Otherwise, the step is “unsuccessful”. We reset 𝜔𝜔 = 1 and try again.

 In the successful case, a small 𝛾𝛾 𝜔𝜔 indicates a good choice of 𝜔𝜔 and we keep 
this value to the next iteration.
If 𝛾𝛾 𝜔𝜔 is not small enough, we increase 𝜔𝜔 for the next iteration hoping a 
better result.



LMaFit
Algorism



LMaFit and Geometric Algorithms

 LMaFit has a geometric interpretation.

 Consider the simultaneous update version of LMaFit:

 𝑋𝑋+ = 𝑍𝑍𝑌𝑌† = 𝑋𝑋𝑌𝑌 + 𝒫𝒫Ω 𝑀𝑀 − 𝑋𝑋𝑌𝑌 𝑌𝑌𝑇𝑇𝑌𝑌 −1𝑌𝑌𝑇𝑇 = 𝑋𝑋 − 𝒫𝒫Ω 𝑋𝑋𝑌𝑌 −𝑀𝑀 𝑌𝑌𝑇𝑇𝑌𝑌 −1𝑌𝑌𝑇𝑇
= 𝑋𝑋 − 𝑆𝑆 𝑌𝑌𝑇𝑇𝑌𝑌 −1𝑌𝑌𝑇𝑇

 𝑌𝑌+ = 𝑋𝑋†𝑍𝑍 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇 𝑋𝑋𝑌𝑌 + 𝒫𝒫Ω 𝑀𝑀 − 𝑋𝑋𝑌𝑌 = 𝑌𝑌 − 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝒫𝒫Ω 𝑋𝑋𝑌𝑌 −𝑀𝑀
= 𝑌𝑌 − 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑆𝑆

where 𝑆𝑆 ≔ 𝒫𝒫Ω 𝑋𝑋𝑌𝑌 −𝑀𝑀 .

 The SOR version is 

 𝑋𝑋+ = 1 − 𝜔𝜔 𝑋𝑋 + 𝜔𝜔 𝑋𝑋 − 𝑆𝑆 𝑌𝑌𝑇𝑇𝑌𝑌 −1𝑌𝑌𝑇𝑇 = 𝑋𝑋 − 𝜔𝜔𝑆𝑆 𝑌𝑌𝑇𝑇𝑌𝑌 −1𝑌𝑌𝑇𝑇

 𝑌𝑌+ = 1 − 𝜔𝜔 𝑌𝑌 + 𝜔𝜔 𝑌𝑌 − 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑆𝑆 = Y − 𝜔𝜔 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑆𝑆



qGeomMC

 Consider MC problem

arg min
𝑋𝑋∈ℝ𝑟𝑟𝑛𝑛×𝑚𝑚

𝑓𝑓 𝑋𝑋 ≔
1
2

𝒫𝒫Ω 𝑋𝑋 − 𝑋𝑋∗ 𝐹𝐹
2

 Motivated by the factorization 𝑋𝑋 = 𝐺𝐺𝐻𝐻𝑇𝑇, where 𝐺𝐺 ∈ ℝ∗
𝑛𝑛×𝑟𝑟 and 𝐻𝐻 ∈ ℝ∗

𝑚𝑚×𝑟𝑟.
qGeomMC optimize in the quotient space

𝑀𝑀 ≔ ℝ𝑟𝑟
𝑛𝑛×𝑚𝑚 = ⁄ℝ∗

𝑛𝑛×𝑟𝑟 × ℝ∗
𝑚𝑚×𝑟𝑟 𝐺𝐺𝐺𝐺 𝑟𝑟

where 𝐺𝐺𝐺𝐺 𝑟𝑟 act on �𝑀𝑀 ≔ ℝ∗
𝑛𝑛×𝑟𝑟 × ℝ∗

𝑚𝑚×𝑟𝑟 as

𝐺𝐺𝐺𝐺 𝑟𝑟 × �𝑀𝑀 → �𝑀𝑀

𝑅𝑅, 𝐺𝐺,𝐻𝐻 ↦ 𝐺𝐺𝑅𝑅−1,𝐻𝐻𝑅𝑅𝑇𝑇



qGeomMC
Metric, Gradient

 The metric on the total space �𝑀𝑀 is induced by a diagonal approximation of 
the Hessian of ̅𝑓𝑓 𝐺𝐺,𝐻𝐻 ≔ 1

2
𝒫𝒫Ω 𝐺𝐺𝐻𝐻 − 𝑋𝑋∗ 𝐹𝐹

2.

 At �̅�𝑥 = 𝐺𝐺,𝐻𝐻 ∈ �𝑀𝑀, 𝑇𝑇�̅�𝑥 �𝑀𝑀 = ℝ𝑛𝑛×𝑟𝑟 × ℝ𝑚𝑚×𝑟𝑟, for ̅𝜉𝜉�̅�𝑥, �̅�𝜂�̅�𝑥 ∈ 𝑇𝑇�̅�𝑥 �𝑀𝑀

�̅�𝑔�̅�𝑥 ̅𝜉𝜉�̅�𝑥, �̅�𝜂�̅�𝑥 ≔ 𝑆𝑆𝑟𝑟 𝐻𝐻𝑇𝑇𝐻𝐻 ̅𝜉𝜉𝐺𝐺𝑇𝑇�̅�𝜂𝐺𝐺 + 𝑆𝑆𝑟𝑟 𝐺𝐺𝑇𝑇𝐺𝐺 ̅𝜉𝜉𝐻𝐻𝑇𝑇�̅�𝜂𝐻𝐻

 The gradient 𝛻𝛻 ̅𝑓𝑓 at �̅�𝑥 under this metric is

𝛻𝛻 ̅𝑓𝑓 �̅�𝑥 = 𝑆𝑆𝐻𝐻 𝐻𝐻𝑇𝑇𝐻𝐻 −1, 𝑆𝑆𝑇𝑇𝐺𝐺 𝐺𝐺𝑇𝑇𝐺𝐺 −1

where 𝑆𝑆 ≔ 𝒫𝒫Ω 𝐺𝐺𝐻𝐻𝑇𝑇 − 𝑋𝑋∗ .



qGeomMC
Gradient Descent Scheme

 The gradient descent’s update rule is

 𝐺𝐺+ = 𝐺𝐺 − 𝜔𝜔𝑆𝑆𝐻𝐻 𝐻𝐻𝑇𝑇𝐻𝐻 −1

 𝐻𝐻+ = 𝐻𝐻 − 𝜔𝜔𝑆𝑆𝑇𝑇𝐺𝐺 𝐺𝐺𝑇𝑇𝐺𝐺 −1

 Compare this scheme with the simultaneous update version of LMaFit, we find 
that they share the same rule.



Comparison



Comparison



Storage

 All the algorithms do not compute directly on the 𝑛𝑛 × 𝑚𝑚 matrix but on the 
low-rank factorizations. This strategy save the required storage so that these 
algorithms can be applied to large scale datasets.



Computation

 All the algorisms need do SVD in each step. They use clever ways to avoid 
compute on the 𝑛𝑛 × 𝑚𝑚 matrix but on the low-rank parts. Which is workable.

 In general the computation cost is linear to 𝑚𝑚 + 𝑛𝑛.



Conclusion

 We have introduced several optimization methods on the matrix manifolds 
which are efficient on MC problems.

 Optimization on manifolds have been considered long before, but the real 
application comes only recently partly due to the demand of the right 
problem to solve.



Thanks for Listening!
If you are interested in the topic, please feel free to stop by.
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